
sl3igh_bells.xmas

A Mr. Robot Holiday Special and KringleCon 2 Writeup

written by

Will Springer

INT. ELLIOT'S APARTMENT - NIGHT

ELLIOT sits at his desk. He is in the zone, staring intensely
at the screen. He types out code into the text editor on his
screen.

We hear CHRISTMAS MUSIC muffled from out on the street.

ELLIOT (V.O.)
At night, distractions get pushed
to the corners of your mind. Night
makes it easier to think, to
connect directly to the machine.

He makes a mistake typing.

ELLIOT (V.O.) (CONT'D)
Until your bandwidth gets throttled
by reality.

MR. ROBOT sits across the apartment.

MR. ROBOT
(calling over to Elliot)

Time to go to bed, kid.

Elliot takes a deep breath. Runs his hand over his head.

ELLIOT (V.O.)
Humans, like computers, crash when
our resources are exhausted. If
only we could free up memory to
keep going.

MONTAGE - ELLIOT GETS READY FOR BED

- Elliot brushes his teeth in the bathroom.

- Elliot sets out new water for FLIPPER.

- Elliot hops into bed, Flipper curling up next to him.

END OF MONTAGE

Elliot turns off the light. Lays on his back. Closes eyes.

Opens eyes. Stares into the camera.

ELLIOT (V.O.)
I can't sleep.

Closes eyes.

2.

ELLIOT (V.O.) (CONT'D)
I envy the computer's ability to
shut down.

ELLIOT
(to himself)

One... two... three... four...

ELLIOT (V.O.)
There has to be an easier way to do
this without counting sheep.

CHRISTMAS MUSIC playing "Rudolf the Red-Nosed Reindeer".

ELLIOT (V.O.) (CONT'D)
(sleepy)

Counting reindeer...

INT. ELF UNIVERSITY - TRAIN STATION - DAY

Elliot steps out of a red steam train onto the platform.

SANTA stumbled up to Elliot frantically.

SANTA
Mr. Alderson. Thank goodness you're
here.

ELLIOT (V.O.)
What?

SANTA
They're gone! All gone!

Santa walks hastily toward the quad. Elliot follows him.

EXT. ELF UNIVERSITY - QUAD - DAY

Santa walks quickly through the quad, looking around.

SANTA
Now, normally I wouldn't call
Allsafe for something so trivial,
but my darling two turtle doves are
missing and I have no idea where
they got off too.

Santa continues looking around.

3.

SANTA (CONT'D)
Please. Anything you can do to help
me find them would be so
appreciated.

Elliot glances around. He squats down and examines some bird
prints in the snow.

ELLIOT
Maybe these?

Elliot follows the footprints through a door.

INT. ELF UNIVERSITY - STUDENT UNION - DAY

Elliot walks into the Student Union. There sit the two turtle
doves MICHAEL and JANE next to the fireplace, basking in the
warmth.

ELLIOT
There you are.

He stretches out his hands and they hop on his hand.

He carries them away.

EXT. ELF UNIVERSITY - QUAD - DAY

ELLIOT
(calling)

Hey, hey Santa. I found them.

SANTA
Oh thank goodness!

Santa jogs up to them.

SANTA (CONT'D)
There you two are. Never run off
like that again. You scared the
Christmas spirit right out of me!
Common, let me take you home—

An EXPLOSION blows a hole in the side of the Student Union.
Debris flies everywhere. Santa and Elliot and knocked to the
ground. The turtle doves fly away.

Elliot's ears RING.

SANTA (CONT'D)
(distant)

Elliot?! Elliot?! Are you okay?!

4.

Elliot stares in shock.

SANTA (CONT'D)
Elliot!?

ELLIOT
Yeah, I think so.

He runs his hand across a gash on his face. Looks at his
hand. There is a small amount of blood on it.

An elf, WUNORSE OPENSLAE, runs up to them.

WUNORSE
Santa! Santa! We're under attack!

SANTA
What's going on?

WUNORSE
It looks like we were hit with a
piece of industrial control
malware. It built up pressure in
the steam tunnels and caused the
explosion. We had just received a
threat.

Wunorse holds up his phone.

The screen reads: Uh, oh! It looks like you forgot to floss
and now your systems have gingivitis! You can pay 5 smilecoin
to fix your computers, but it won't do anything. -WannaSpry

WUNORSE (CONT'D)
What are we going to do? There was
a letter attached to the email, but
it was blacked out.

ELLIOT
Can I see?

Elliot takes the phone from Wunorse. Opens up the attached
letter.

He presses his finger on the text.

ELLIOT (CONT'D)
The redaction was done on a
different layer of the PDF. They
should have merged the layers,
which would have prevented you from
getting access to the next
underneath.

5.

Elliot highlights the text and pasts it to a new document.
The text reads:

Date: February 28, 2019 To the Administration, Faculty, and
Staff of Elf University 17 Christmas Tree Lane North Pole
From: A Concerned and Aggrieved Character Subject: DEMAND:
Spread Holiday Cheer to Other Holidays and Mythical
Characters… OR ELSE! Attention All Elf University Personnel,
It remains a constant source of frustration that Elf
University and the entire operation at the North Pole focuses
exclusively on Mr. S. Claus and his year-end holiday spree.
We URGE you to consider lending your considerable resources
and expertise in providing merriment, cheer, toys, candy, and
much more to other holidays year-round, as well as to other
mythical characters. For centuries, we have expressed our
frustration at your lack of willingness to spread your cheer
beyond the inaptly-called “Holiday Season.” There are many
other perfectly fine holidays and mythical characters that
need your direct support year-round. If you do not accede to
our demands, we will be forced to take matters into our own
hands. We do not make this threat lightly. You have less than
six months to act demonstrably. Sincerely, --A Concerned and
Aggrieved Character

ELLIOT (CONT'D)
Someone has a bone to pick with
you, Santa.

SANTA
But I don't understand... it's the
holiday season...

WUNORSE
(to Elliot)

Hey you...

ELLIOT
Elliot.

WUNORSE
Elliot. Can you help us respond to
this? Isn't this what you do at
Allsafe?

ELLIOT
I haven't done much ICS work, but
I'm happy to help in whatever way I
can.

WUNORSE
I'll take you to the SOC.

6.

INT. ELF UNIVERSITY - SECURITY OPERATIONS CENTER - DAY

A row of elves look at data on their screens, sorting through
data. There are big screens at the front of the room like at
NASA. They are talking frantically to one another.

HOLLY EVERGREEN comes up to Elliot and Wunorse.

HOLLY
It's been a KRINGLing mess in here.
We're getting hit over all of our
systems. This must be a nation
state or something. No way this is
the Abominable Snowman flying solo
again.

WUNORSE
I brought reinforcements. Holly,
meet Elliot. He does incident
response.

HOLLY
Glad to have you helping out.

Holly scans the row of elves. Points at KENT TINSELTOOTH.

HOLLY (CONT'D)
(at Kent)

Kent, hop off and let Elliot take a
look.

Kent jumps up. Elliot sits down at his desk. Kent pulls up a
chair next to him.

ELLIOT
What do we have?

KENT
I'm supposed to figure out how the
attackers got in. I have a set of
event logs.

ELLIOT
Let me take a look.

Elliot opens the Security.evtx file on Kent's computer in
Windows Event Viewer. Elliot scans the list of events.

KENT
From what I can tell, it looks like
someone tried to run a password
spray attack against our domain
controller.

(MORE)

7.

KENT (CONT'D)
There are so many logon attempts
with a failure reason of "Unknown
user name or bad password".

Elliot sorts the events by time.

ELLIOT (V.O.)
After all of the failures, there's
a "credential validation" entry?
That's our culprit.

ELLIOT
Looks like the account they got
access to was "supatree".

Kent jots down the note.

ELLIOT (CONT'D)
After they got access, they likely
would have dumped the domain
hashes. Do you have the Sysmon
data?

KENT
I think so.

Kent hops on the computer and retrieves the file.

KENT (CONT'D)
Here.

Elliot takes control of the computer.

ELLIOT (V.O.)
ntdsutil can be used to make a
backup of the domain hashes. They
might have gone after it to
retrieve the hashes.

Elliot runs: eql query -f sysmon-data.json "process where
process_name == 'ntdsutil.exe'" | jq

The output reads: "command_line": "ntdsutil.exe \"ac i
ntds\" ifm \"create full c:\\hive\" q q"

ELLIOT
Hive. That must be what they used
to steal the hashes.

KENT
Got it.

Holly walks over.

8.

HOLLY
Figured it out?

KENT
Yeah, Elliot got it.

HOLLY
Well, we're still not out of the
fire wood yet. We'll need you to
help us out on the network side
too.

Holly walks over to another desk with PEPPER MINSTIX seated
at it.

HOLLY (CONT'D)
Pepper, Elliot's here to help out.

PEPPER
But I am working on it...

HOLLY
Time's crucial. Please, let him
work on it with you.

PEPPER
Fine. But I'm driving.

Holly looks at Elliot.

ELLIOT
That's fine.

PEPPER
I'm looking at some Zeek logs. We
think they installed some malware
on the compromised systems after
they gained access. But they were
pretty sneaky with it by not mass
installing it.

ELLIOT
Did you already take a look at the
logs in RITA?

PEPPER
What's that?

ELLIOT
It looks for trends in Zeek logs.

Pepper opens her web browser, finds RITA, and installs it.
She starts clicking through the tabs.

9.

ELLIOT (CONT'D)
Go to the "Beacons" tab.

Holly goes to the Beacons tab.

One entry has a correlation score of 0.998 with a source IP
of 192.168.134.130.

ELLIOT (V.O.)
That high correlation. That must be
it. It indicates calling back to
the C2 server. The small variation
in likely due to network jitter.

ELLIOT
There.

PEPPER
(calling over to Holly)

You see that? We got it, even with
me driving. Learn to give me some
credit.

Kent walks over.

KENT
Hey Elliot, I need your help again.

Elliot slides his chair over to Kent's desk.

KENT (CONT'D)
I'm trying to figure out how the
malware Pepper saw was downloaded.
First, I took a look a the
Powershell activity on the box.

Kent opens up Splunk and shows the query: index=main
sourcetype="WinEventLog:Microsoft-Windows-
Powershell/Operational"

KENT (CONT'D)
I saw there was one burst of
activity, so I tried to track what
was going on at that time.

He clicks the time at the start of the cluster adds "|
reverse" to the query and adjusts time to plus/minus 5
seconds of the activity.

ELLIOT
Take a look at the other activity
on the box around that time.

Kent removes the filters.

10.

ELLIOT (CONT'D)
Sysmon would probably be a good
place to look.

Elliot takes control of the computer. He selects the
sourcetype of "XmlWinEventLog:Microsoft-Windows-
Sysmon/Operational". Shows two process_id values of 6268 and
5864.

ELLIOT (V.O.)
I need to convert those PIDs to hex
to be able to search for Windows
Process Execution events.

Elliot converts them to hex in using an online hex
calculator. Output is 0x187c and 0x16e8. He runs: index=main
sourcetype=WinEventLog (0x187c OR 0x16e8).

A result contains the following: Process Command Line:
"C:\Program Files (x86)\Microsoft
Office\Root\Office16\WINWORD.EXE" /n
"C:\Windows\Temp\Temp1_Buttercups_HOL404_assignment
(002).zip\19th Century Holiday Cheer Assignment.docm" /o ""

ELLIOT (V.O.) (CONT'D)
Must be our culprit dropper file.

ELLIOT
Do you store the file contents
anywhere?

KENT
Yeah. We parse them using stoQ.

He takes back control of the keyboard and mouse.

KENT (CONT'D)
First, we'll need to reassemble the
path to the file in stoQ.

Kent rebuilds the path with: sourcetype=stoq "19th Century
Holiday Cheer Assignment.docm" | eval results = spath(_raw,
"results{}") | mvexpand results | eval path=spath(results,
"archivers.filedir.path"), filename=spath(results,
"payload_meta.extra_data.filename"),
fullpath=path."/".filename | search fullpath!="" | table
filename,fullpath.

Output is:
/home/ubuntu/archive/c/6/e/1/7/c6e175f5b8048c771b3a3fac5f3295
d2032524af/19th Century Holiday Cheer Assignment.docm

He pulls up the document in the file system using the output
path.

11.

It reads: Cleaned for your safety. Happy Holidays! In the
real world, This would have been a wonderful artifact for you
to investigate, but it had malware in it of course so it's
not posted here. Fear not! The core.xml file that was a
component of this original macro-enabled Word doc is still in
this File Archive thanks to stoQ. Find it and you will be a
happy elf :-)

He opens the core.xml file at:
/home/ubuntu/archive/f/f/1/e/a/ff1ea6f13be3faabd0da728f514deb
7fe3577cc4/core.xml.

In the XML, there is a message tag that reads: Kent you are
so unfair. And we were going to make you the king of the
Winter Carnival.

KENT (CONT'D)
How... who is this from?

ELLIOT
Must have ticked someone off.

KENT
I... can't think of who that would
be.

Holly comes over.

HOLLY
Elliot, can you come take a look at
this? We had some unusual activity
on the steam tunnel access logs,
but we're getting a defect in our
camera webapp.

Elliot and Holly walk over to Holly's computer.

HOLLY (CONT'D)
This image from the security camera
system isn't loading properly.

Elliot opens up the Chrome developer tools and opens the
Network tab. He refreshes the page.

A krampus.png file appears. The picture of someone flashes on
the screen, then disappears.

HOLLY (CONT'D)
There! That must be it.

Elliot downloads the image from the Network tab, rotates it,
and zooms in. There is a key attached to the figure's belt.

12.

HOLLY (CONT'D)
That's how they got access to the
steam tunnel. We need to go check
it out, but we lost the master key
months ago.

ELLIOT
Here.

Elliot downloads
https://github.com/deviantollam/decoding/blob/master/Key%20De
coding/Decoding%20-%20Schlage.png.

He overlays the key decoder over the image of the key.

ELLIOT (CONT'D)
Bitting order is 1-2-2-5-2-0.

HOLLY
We have a key cutter in the
maintenance closet. We'll stop by
on the way to the steam tunnel
entrance.

INT. ELF UNIVERSITY - STEAM TUNNELS - DAY

Elliot and Holly open the door to the steam tunnels. It's
dark. Steam sounds come from different parts of the hall.

HOLLY
This is eerie.

A silhouette runs in front of them.

HOLLY (CONT'D)
Whose there?

They walk slowly to where they saw the figure run by. The
figure from earlier, KRAMPUS HOLLYFELD, is tucked into the
corner.

KRAMPUS
(frightened)

Please... I didn't know... I didn't
know anything like this was going
to happen.

ELLIOT
Who are you?

KRAMPUS
Krampus Hollyfeld, the steam tunnel
apprentice.

13.

HOLLY
Did you have anything to do with
the explosion?

KRAMPUS
I'm not sure.

HOLLY
You know something about it?

KRAMPUS
Well... I didn't mean to...

HOLLY
(angrily)

Someone could have been killed!

Krampus pauses for a beat.

KRAMPUS
I got an email from someone. They
said they had broken into my
computer and they had photos of me
while I was changing. They had my
password and everything! They said
they'd post them on the internet if
I didn't help them.

HOLLY
That sounds like a scam. So what
did you do?

KRAMPUS
I received a USB stick in the mail.
There was a note saying to plug it
into the main control computer for
the steam tunnels.

HOLLY
(yelling)

And you did it? You didn't report
it to security?

KRAMPUS
I was scared! After I plugged it
in, it didn't seem like it did
anything, so I thought it was fine.
All the steam gauges were reading
normally when the explosion
occurred.

14.

ELLIOT
They probably manipulated the
readings on the steam pressure. Do
you still have this USB drive?

KRAMPUS
Yeah.

Krampus pulls the drive out of his pocket.

ELLIOT
Holly, do you have a computer I can
analyze this with?

HOLLY
Yeah, you can use my laptop.

INT. ELF UNIVERSITY - SECURITY OPERATIONS CENTER - DAY

Elliot looks at the screen. Holly and Krampus are next to
him.

ELLIOT (V.O.)
Based on the malware behavior, it
appears to have been reaching out
to fridosleigh.com/kill.

Elliot goes to fridosleigh.com/kill. Error, page not found.

He goes to fridosleigh.com. There is a CAPTEHA on the page.
It times out quickly.

ELLIOT
I think if I solve the CAPTEHA in
time, it might create the kill
page.

He opens a text editor and cranks out some code.

He runs the code and goes back to fridosleigh.com/kill.
Success. Page reads 8Ia8LiZEwvyZr2WO.

HOLLY
Krampus, is there anything else you
can...

Krampus is gone.

HOLLY (CONT'D)
Where did he go? Krampus?

She looks around the room and then walks down the hall. She
claps her hand over her mouth in shock.

15.

HOLLY (CONT'D)
Oh!

Krampus lays dead on the floor of the hall, foam still
bubbling from his mouth.

ELLIOT (V.O.)
KRINGLE this just got real.

INT. ELF UNIVERSITY - SECURITY OPERATIONS CENTER - LATER

Medics carry Krampus' body out on a stretcher.

HOLLY
Look what I found clenched in his
hand.

Holly shows Elliot a piece of paper. There is a website
printed on it: studentportal.elfu.org/application-check.php.

HOLLY (CONT'D)
We're going to need to get access
to his files.

Elliot opens the website in a browser tab.

He starts typing "test@test.com OR 1=1;--" into the email
field. Gets a "not a valid email format" error.

Elliot open Burp and runs the request with test@test.com as
the email address. He intercepts the request.

It first goes to "validator.php". He checks the response.
There is a token in the response.

He forwards the request. The page then goes to "application-
check.php" with "elfmail" and "token" parameters. The token
parameter is populated with the token from the previous
request.

He swaps out "test@test.com OR 1=1;--" for the "elfmail"
value and forwards the request.

He gets an invalid syntax error "near '--".

He opens Burp and creates a new macro. He defines a custom
"token" parameter for the "validator.php" response and
isolates the responses token.

He sets up the macro to populate the token value on the
second request automatically.

16.

He runs: sqlmap -u
"https://studentportal.elfu.org/application-check.php?
elfmail=test%40test.com&token=test" -p elfmail --
proxy=https://localhost:8080 --dump

He opens up a dumped table called "krampu" in the "elfu"
database.

In it are a set of file addresses for a set of .pngs. He
retrieves the files and opens them to find image fragments of
a letter.

He assembles them and sees a letter talking about sabotaging
Santa's new Super Sled-o-matic guidance system.

HOLLY (CONT'D)
So the steam explosion must have
just been a diversion to distract
from this sabotage.

ELLIOT
One sec.

Elliot looks through the other dumped databases and sees file
called
ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc.
He downloads it.

ELLIOT (CONT'D)
It looks like this was encrypted
with something.

HOLLY
If it was encrypted by someone
here, it would have been with the
Elfscrow program that we use.
There's no way of retrieving the
file though unless we know what the
secret ID for retrieving the
decryption key.

ELLIOT
Do you have a copy of this program?

HOLLY
Yeah.

Holly points Elliot to the program on her computer.

Elliot downloads IDA Free in a web browser and opens Elfscrow
in it. He opens the generate_key function.

17.

ELLIOT (V.O.)
According to the code, the current
time is being used as the seed for
the encryption.

Elliot opens the super_secure_random function.

ELLIOT (V.O.) (CONT'D)
Based on the values being used in
the random number generation, this
is Microsoft's LCG algorithm.

He goes back to the generate_key function.

ELLIOT (V.O.) (CONT'D)
It's completing eight cycles of
random number generation, each time
take one byte and stringing it
together to create the key.

Goes to the do_encrypt function.

ELLIOT (V.O.) (CONT'D)
Then, it's using the key with the
DES-CBC algorithm. Based on the
metadata of the document, it must
have been created on December 6,
2019 at some point.

Elliot opens a text editor and starts typing.

INT. ELF UNIVERSITY - SECURITY OPERATIONS CENTER - LATER

Elliot finishes his script and runs it.

ELLIOT
There. The document was encrypted
at 1575663650 epoch time.

Tries to open the document. It doesn't open, returning a
corrupted error.

ELLIOT (V.O.)
KRINGLE. Did I mess this up?

Elliot searches for a corruption repair site on the web. He
finds one and uploads the file. Downloads the output.

He opens the file successfully. The file is the Super Sled-O-
Matic Machine Learning Sleigh Route Finder Quick-Start Guide.

18.

HOLLY
If this is about Santa's sleigh,
we'd better go to the sleigh shop.

INT. ELF UNIVERSITY - STUDENT UNION - DAY

Holly tries to open the sleigh shop door. It doesn't open.

HOLLY
KRINGLE! Can't this day just be
over already? They must have locked
it for safety.

Elliot take a look at a sign above the lock. The sign reads:
"Please access from the cloud-accessible lock system at
locks.elfu.org".

ELLIOT
Can I use your laptop?

Holly hands him her laptop.

Elliot navigates to the site.

First prompt shows up: You don't need a clever riddle to open
the console and scroll a little.

Elliot opens the developer tools and checks the console.
There is a code there. He enters it.

Next prompt shows up: Some codes are hard to spy, perhaps
they'll show up on pulp with dye?

Elliot pulls up the print page preview. There is a code
embedded there. He enters it.

Third prompt shows up: This code is still unknown; it was
fetched but never shown.

He checks the Network tab and find an image of the code. He
enters it.

Fourth prompt shows up: Where might we keep the things we
forage? Yes, of course: Local barrels!

He checks local storage. Finds another code. Enters it.

Fifth prompt shows up: Did you notice the code in the title?
It may very well prove vital.

He checks the title tag in the HTML. There is another code.
He enters it.

19.

Sixth prompt shows up: In order for this hologram to be
effective, it may be necessary to increase your perspective.

He opens up the Styles tag and increases the perspective
value for .hologram.

Seventh prompt shows up: The font you're seeing is pretty
slick, but this lock's code was my first pick.

He goes to the HTML and opens up the style tag for the font.
There is another code there. He enters it.

Eighth prompt shows up: In the event that the .eggs go bad,
you must figure out who will be sad.

He opens up the Event Listener tab when inspecting the .eggs
value. There is the code "Veronica". He enters it.

Ninth prompt shows up: This next code will be unredacted, but
only when all the chakras are :active.

He opens up the styles.css file linked to by the HTML. He
find in page for "charkra" and finds a code broken up across
multiple child entries. He enters it.

Tenth prompt shows up: Oh, no! This lock's out of commission!
Pop off the cover and locate what's missing.

Elliot opens the lock. There is a code printed on the circuit
board. There are gaps in the circuit board.

He enters the code and submits. Gets an error stating
"missing macaroni". He searches for macaroni in the HTML,
finds a class="macaroni" and drags it into the lock div.

He hits enter again. Gets an error stating "missing swab". He
repeats the same procedure for the swab item.

He hits enter again. Gets an error stating "missing gnome".
He repeats the same procedure for the gnome item.

The door opens.

Elliot and Holly run back inside.

INT. ELF UNIVERSITY - SLEIGH SHOP - DAY

It's dark.

HOLLY
(disgusted)

Ugh. What's that smell?

20.

Elliot flips the light on.

Someone out of view begins SLOW CLAPPING.

Holly gasps.

Reveal the gargantuan, hideous figure of the TOOTH FAIRY. 10
feet tall, rotted, monstrous face.

TOOTH FAIRY
So... someone figured it out after
all. I was wondering if someone
would come along. Well, it's too
late. Santa's sleigh is done for
with all of the junk data we've
sent it. I'm going to go eat some
sugar while Christmas burns to the
ground.

The Tooth Fairy stands up and lumbers out of the room.

A pause.

Elliot opens Holly's laptop.

ELLIOT
Where is the data to the sled-o-
matic ingested?

HOLLY
We have an interface at
srf.elfu.org.

Elliot goes there.

ELLIOT
How to I get in?

HOLLY
Creds are in the git repo. Go to
/README.md.

Elliot goes to the readme page and copy/pastes the default
credentials.

He goes to the log tab and downloads a copy of the log files.

ELLIOT
What should I look for?

HOLLY
Probably standard techniques.

21.

He opens up the log files in a text editor on one side of the
screen and a terminal on the other.

First searches for ".." in the text editor and sees the
relevant log entries. He gathers them with: jq '.[] |
select(.uri | test("[.]{2}")) ' http.log >> mal_logs.txt.

Next he searches "1=1". Grabs with: jq '.[] |
select(.username | test("1=1")) ' http.log >> mal_logs.txt.

Next "UNION". Grabs them with jq '.[] | select(.user_agent |
test("UNION")) ' http.log >> mal_logs.txt and jq '.[] |
select(.uri | test("UNION")) ' http.log >> mal_logs.txt.

Next "/etc/passwd". Grabs with: jq '.[] | select(.uri |
test("\/etc\/passwd")) ' http.log >> mal_logs.txt.

Next "/bin/". Grabs with: jq '.[] | select(.user_agent |
test(".*\/bin\/.*")) ' http.log >> mal_logs.txt.

Next "<script>". Grabs with jq '.[] | select(.uri | test("
<script>")) ' http.log >> mal_logs.txt and jq '.[] |
select(.host | test("<script>")) ' http.log >> mal_logs.txt.

He dedupes the log list with cat mal_logs.txt | jq -s '.' |
jq 'unique_by(.uid)' | pbcopy.

He counts the user_agent entries and looks at the agent
names. Runs: cat mal_logs.txt | jq -r -s ".[] |
unique_by(.user_agent) | .[].user_agent" > user_agents.txt
and IFS=$'\n'; for each in $(cat user_agents.txt); do jq -r
--arg agent "$each" '.[] | select(.user_agent==$agent) |
.user_agent' http.log >> agent_count.txt; done and cat
agent_count.txt | uniq -c | sort.

He looks at the output. There are four agents with ten or
more entries.

ELLIOT (V.O.)
Most of these agents look weird,
but the most common ones might be
legit.

Elliot opens user_agents.txt and manually reviews the
entries, removing those that are not malicious for those with
ten or more entries.

He runs: IFS=$'\n'; for each in $(cat user_agents.txt); do jq
-r --arg agent "$each" '.[] | select(.user_agent==$agent)'
http.log >> surplus_ips.txt; done and for each in $(cat
surplus_ips.txt | jq -s -r '.[] | ."id.orig_h"'); do printf
"$each, "; done.

22.

He gets a "route calculation success" message with a code of
0807198508261964.

ELLIOT
Done. The sleigh should be all good
to go.

HOLLY
Good. We better get back to base to
check.

EXT. ELF UNIVERSITY - QUAD - DAY

Holly and Elliot walk towards the SOC.

There is a loud ROAR behind them. They whip around.

The Tooth Fairly is lumbering towards them.

TOOTH FAIRY
You! You foiled my plot. Months of
labor and cost. Do you know how
hard it is to steal Monero from the
North Korean military? Now it's all
wasted. You two are going to pay.

The Tooth Fairy lumbers over, shoving Elliot and Holly to the
ground.

TOOTH FAIRY (CONT'D)
Goodbye.

The Tooth Fairy lifts a massive foot and brings it above
Elliot and Holly's heads.

The small figure of Kent jumps up on the Tooth Fairy and lets
out a BATTLE CRY. Kent wraps a long strand of dental floss
around the Tooth Fairy.

With each word, he digs the floss into a nook in the Tooth
Fairy's body. Each dig causes dental plaque to go flying and
the Tooth Fairy to shriek.

KENT
(yelling)

What kind of creep leaves a message
for someone in a malware file? What
did you do, stalk me on LinkedIn?

The Tooth Fairy continues to scream, but its voice gets
higher and higher in pitch as it shrinks to the size and
appearance of a normal human tooth.

23.

Kent picks up the Tooth Fairy.

KENT (CONT'D)
Time to stick you under someone's
pillow.

Kent walks away with the still screaming Tooth Fairy.

HOLLY
Elliot, thank you for all of your
help. If there is anything we can
do to repay...

DARLENE (O.S.)
Elliot!

ELLIOT (V.O.)
Huh?

INT. ELLIOT'S APARTMENT - MORNING

DARLENE is standing over Elliot.

DARLENE
Hey dumb KRINGLE. Wake up. We need
to fix this KRINGLE.

ELLIOT
I'm up, I'm up.

Elliot pivots to the edge of the bed.

ELLIOT (CONT'D)
What's the problem? Isn't it
Christmas?

THE END

Code for Objective 8 - Bypassing the Frido Sleigh
CAPTEHA
#!/usr/bin/env python3

Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld

import​ base64
import​ requests
import​ json
import​ glob
import​ sys
import​ os
os.environ[​'TF_CPP_MIN_LOG_LEVEL'​] = ​'3'
import​ tensorflow ​as​ tf
import​ numpy ​as​ np
import​ threading
import​ queue
import​ time
import​ re

def​ ​main​():
 yourREALemailAddress = ​"tisop39103@mailart.top"

 ​# Creating a session to handle cookies
 s = requests.Session()

 url = ​"https://fridosleigh.com/"

 json_resp = json.loads(s.get(​"{}api/capteha/request"​.format(url)).text)
 b64_images = json_resp[​'images'​] ​# A list of
dictionaries eaching containing the keys 'base64' and 'uuid'

 challenge_image_type = json_resp[​'select_type'​].split(​','​) ​# The
Image types the CAPTEHA Challenge is looking for.

 challenge_image_types = [challenge_image_type[0].strip(),

challenge_image_type[1].strip(), challenge_image_type[2].replace(​' and
'​,​''​).strip()] ​# cleaning and formatting

 files = glob.glob(​"./unknown_images/*"​)
 ​for​ f ​in​ files:
 os.remove(f)

 files = glob.glob(​"./selected_images/*"​)

 ​for​ f ​in​ files:
 os.remove(f)

 ​for​ image ​in​ b64_images:
 f = open(​"./unknown_images/"​ + image[​"uuid"​] + ​".png"​, ​"xb"​)
 f.write(base64.b64decode(image[​"base64"​]))
 f.close()

 answer = predict(challenge_image_types)

 ​# This should be JUST a csv list image uuids ML predicted to match the
challenge_image_type .

 final_answer = ​','​.join(answer)

 json_resp = json.loads(s.post(​"{}api/capteha/submit"​.format(url),
data={​'answer'​:final_answer}).text)
 ​if​ ​not​ json_resp[​'request'​]:
 ​# If it fails just run again. ML might get one wrong occasionally
 print(​'FAILED MACHINE LEARNING GUESS'​)
 print(​'--------------------\nOur ML
Guess:\n--------------------\n{}'​.format(final_answer))
 print(​'--------------------\nServer
Response:\n--------------------\n{}'​.format(json_resp[​'data'​]))
 sys.exit(1)

 print(​'CAPTEHA Solved!'​)
 ​# If we get to here, we are successful and can submit a bunch of
entries till we win

 userinfo = {

 ​'name'​:​'Krampus Hollyfeld'​,
 ​'email'​:yourREALemailAddress,
 ​'age'​:180,
 ​'about'​:​"Cause they're so flippin yummy!"​,
 ​'favorites'​:​'thickmints'
 }

 ​# If we win the once-per minute drawing, it will tell us we were
emailed.

 ​# Should be no more than 200 times before we win. If more, somethings
wrong.

 entry_response = ​''
 entry_count = 1

 ​while​ yourREALemailAddress ​not​ ​in​ entry_response ​and​ entry_count < 200:

 print(​'Submitting lots of entries until we win the contest! Entry
#{}'​.format(entry_count))
 entry_response = s.post(​"{}api/entry"​.format(url),
data=userinfo).text

 entry_count += 1

 print(entry_response)

def​ ​load_labels​(label_file):
 label = []

 proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()

 ​for​ l ​in​ proto_as_ascii_lines:
 label.append(l.rstrip())

 ​return​ label

def​ ​predict_image​(q, sess, graph, image_bytes, img_full_path, labels,
input_operation, output_operation):

 image = read_tensor_from_image_bytes(image_bytes)

 results = sess.run(output_operation.outputs[0], {

 input_operation.outputs[0]: image

 })

 results = np.squeeze(results)

 prediction = results.argsort()[-5:][::-1][0]

 q.put({​'img_full_path'​:img_full_path,
'prediction'​:labels[prediction].title(), ​'percent'​:results[prediction],
'bytes'​: image_bytes})

def​ ​load_graph​(model_file):
 graph = tf.Graph()

 graph_def = tf.GraphDef()

 ​with​ open(model_file, ​"rb"​) ​as​ f:
 graph_def.ParseFromString(f.read())

 ​with​ graph.as_default():
 tf.import_graph_def(graph_def)

 ​return​ graph

def​ ​read_tensor_from_image_bytes​(imagebytes, input_height=299,
input_width=299, input_mean=0, input_std=255):

 image_reader = tf.image.decode_png(imagebytes, channels=3,

name=​"png_reader"​)
 float_caster = tf.cast(image_reader, tf.float32)

 dims_expander = tf.expand_dims(float_caster, 0)

 resized = tf.image.resize_bilinear(dims_expander, [input_height,

input_width])

 normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])

 sess = tf.compat.v1.Session()

 result = sess.run(normalized)

 ​return​ result

def​ ​predict​(requested_types):
 ​# Loading the Trained Machine Learning Model created from running
retrain.py on the training_images directory

 graph = load_graph(​'/tmp/retrain_tmp/output_graph.pb'​)
 labels = load_labels(​"/tmp/retrain_tmp/output_labels.txt"​)

 ​# Load up our session
 input_operation = graph.get_operation_by_name(​"import/Placeholder"​)
 output_operation = graph.get_operation_by_name(​"import/final_result"​)
 sess = tf.compat.v1.Session(graph=graph)

 ​# Can use queues and threading to spead up the processing
 q = queue.Queue()

 unknown_images_dir = ​'unknown_images'
 unknown_images = os.listdir(unknown_images_dir)

 ​#Going to interate over each of our images.
 ​for​ image ​in​ unknown_images:
 img_full_path = ​'{}/{}'​.format(unknown_images_dir, image)
 print(​'Processing Image {}'​.format(img_full_path))

 ​# We don't want to process too many images at once. 10 threads max
 ​while​ len(threading.enumerate()) > 100:
 time.sleep(0.0001)

 ​#predict_image function is expecting png image bytes so we read
image as 'rb' to get a bytes object

 image_bytes = open(img_full_path,​'rb'​).read()
 threading.Thread(target=predict_image, args=(q, sess, graph,

image_bytes, img_full_path, labels, input_operation,

output_operation)).start()

 print(​'Waiting For Threads to Finish...'​)
 ​while​ q.qsize() < len(unknown_images):
 time.sleep(0.0001)

 ​#getting a list of all threads returned results
 prediction_results = [q.get() ​for​ x ​in​ range(q.qsize())]

 uid_list = []

 print_list = []

 ​#do something with our results... Like print them to the screen.
 print(requested_types)

 ​for​ prediction ​in​ prediction_results:
 pattern = ​"[a-z0-9A-Z-]+(?=\.png)"
 file_path = re.search(pattern, prediction[​"img_full_path"​])
 uid = file_path.group(0)

 ​#print(uid + " " + prediction["prediction"] + " -
{:.2%}".format(prediction["percent"]))

 ​if​ prediction[​"prediction"​] ​in​ requested_types:
 string = uid + ​" "​ + prediction[​"prediction"​] + ​" -
{:.2%}"​.format(prediction[​"percent"​])
 f = open(​"./selected_images/"​ + uid + ​" "​ +
prediction[​"prediction"​] + ​".png"​, ​"xb"​)
 f.write(prediction[​"bytes"​])
 f.close()

 print(string)

 print_list.append(string)

 uid_list.append(uid)

 print(print_list.sort())

 ​return​ uid_list

if​ __name__ == ​"__main__"​:
 main()

Code for Objective 10 - Recover Cleartext Document
from​ des ​import​ DesKey
from​ Cryptodome.Cipher ​import​ DES
import​ binascii
import​ PyPDF2

key = []

def​ ​lcg_rand​(seed):
 ​global​ key
 seed = (214013 * seed + 2531011) & 0xFFFFFFFF

 seed2 = (seed | 0xFFFFFFFF00000000) >> 16

 seed2 = seed2 & 0xFFFFFFFF

 seed2 = seed2 & 0x7FFF

 seed2 = seed2 & 0x00FF

 seed2 = seed2 & 0x0FF

 key.append(seed2)

 ​return​ seed

def​ ​encrypt​(key, text):
 ​return​ key.encrypt(text, initial=0, padding=​True​)

def​ ​decrypt​(key, encrypted_text):
 ​return​ key.decrypt(encrypted_text, padding=​True​)

def​ ​main​():
 ​global​ key

 ​for​ seed ​in​ range(1575658800, 1575666001):
 key = []

 i = 0

 print(​"original seed {}"​.format(seed))
 ​while​ i < 8:
 seed = lcg_rand(seed)

 seed2 = seed

 i += 1

 key = bytearray(key)

 des = DES.new(key, DES.MODE_CBC, iv=​b'00000000'​)
 ​with
open(​"ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc"​, ​"rb"​) ​as
f:

 f_bytes = f.read()

 dec_bytes = des.decrypt(f_bytes)

 ​with​ open(​"output.pdf"​, ​"wb"​) ​as​ outfile:
 outfile.write(dec_bytes)

 ​try​:
 PyPDF2.PdfFileReader(open(​"output.pdf"​, ​"rb"​))
 print(​"succeeded with seed {} key {}"​.format(seed,
key))

 ​break

 ​except​ PyPDF2.utils.PdfReadError:
 ​continue

if​ __name__ == ​"__main__"​:
 main()

